Density units converter
Density units converter - converts units between kilograms per cubic meter, grams per liter, ounces per galon etc. Both metric and imperial (US and UK) units are included. Also, you will find more exotic units here, such as multiplicity of Earth density or femtograms per liter.

Beta version#

BETA TEST VERSION OF THIS ITEM
This online calculator is currently under heavy development. It may or it may NOT work correctly.
You CAN try to use it. You CAN even get the proper results.
However, please VERIFY all results on your own, as the level of completion of this item is NOT CONFIRMED.
Feel free to send any ideas and comments !

Inputs data - value and unit, which we're going to convert#

Value
Unit
Decimals

#

metric#

UnitSymbolSymbol
(plain text)
ValueNotes
kilograms per cubic meterShow sourcekgm3\frac{kg}{m^3}kg/m³1Basic density unit in the SI system. The substance has a density of one kilogram per cubic meter (1 kg/m³) if a homogeneous sample with volume of one cubic meter (1 m³) has a mass of one kilogram (1 kg).1 kgm3=1000 gm31\ \frac{kg}{m^3} = \frac{1000\ g}{m^3}
kilograms per cubic decimeterShow sourcekgdm3\frac{kg}{dm^3}kg/dm³0.001Derived density unit in the SI system. The substance has a density of one kilogram per cubic decimeter (1 kg/dm³) if a homogeneous sample with volume of one cubic decimeter (1 m³) has a mass of one kilogram (1 kg).1 kgdm3=1 kg0.001 m3=1000 kgm31\ \frac{kg}{dm^3} = \frac{1\ kg}{0.001\ m^3} = 1000\ \frac{kg}{m^3}
kilograms per cubic centimeterShow sourcekgcm3\frac{kg}{cm^3}kg/cm³0.000001Derived density unit in the SI system. The substance has a density of one kilogram per cubic centimeter (1 kg/cm³) if a homogeneous sample with volume of one cubic centimeter (1 cm³) has a mass of one kilogram (1 kg).1 kgcm3=1 kg106 m3=106 kgm31\ \frac{kg}{cm^3} = \frac{1\ kg}{10^{-6}\ m^3} = 10^6\ \frac{kg}{m^3}
kilograms per cubic milimeterShow sourcekgmm3\frac{kg}{mm^3}kg/mm³1×10-9Derived density unit in the SI system. The substance has a density of one kilogram per cubic milimeter (1 kg/mm³) if a homogeneous sample with volume of one cubic milimeter (1 mm³) has a mass of one kilogram (1 kg).1 kgmm3=1 kg109 m3=109 kgm31\ \frac{kg}{mm^3} = \frac{1\ kg}{10^{-9}\ m^3} = 10^9\ \frac{kg}{m^3}
grams per cubic meterShow sourcegm3\frac{g}{m^3}g/m³1000Derived density unit in the SI system. The substance has a density of one gram per cubic meter (1 g/m³) if a homogeneous sample with volume of one cubic meter (1 m³) has a mass of one gram (1 g).1 gm3=1 g1 m3=0.001 kg1 m3=103 kgm31\ \frac{g}{m^3} = \frac{1\ g}{1\ m^3} = \frac{0.001\ kg}{1\ m^3} = 10^{-3}\ \frac{kg}{m^3}
grams per cubic decimeterShow sourcegdm3\frac{g}{dm^3}g/dm³1Derived density unit in the SI system. The substance has a density of one gram per cubic decimeter (1 g/dm³) if a homogeneous sample with volume of one cubic decimeter (1 dm³) has a mass of one gram (1 g).1 gm3=1 g1 dm3=0.001 kg0.001 m3=1 kgm31\ \frac{g}{m^3} = \frac{1\ g}{1\ dm^3} = \frac{\cancel{0.001}\ kg}{\cancel{0.001}\ m^3} = 1\ \frac{kg}{m^3}
grams per cubic centimeterShow sourcegcm3\frac{g}{cm^3}g/cm³0.001Derived density unit in the SI system. The substance has a density of one gram per cubic centimeter (1 g/cm³) if a homogeneous sample with volume of one cubic centimeter (1 cm³) has a mass of one gram (1 g).1 gcm3=1 g1 cm3=103 kg106 m3=1000 kgm31\ \frac{g}{cm^3} = \frac{1\ g}{1\ cm^3} = \frac{10^{-3}\ kg}{10^{-6}\ m^3} = 1000\ \frac{kg}{m^3}
grams per cubic milimeterShow sourcegmm3\frac{g}{mm^3}g/mm³0.000001Derived density unit in the SI system. The substance has a density of one gram per cubic milimeter (1 g/mm³) if a homogeneous sample with volume of one cubic milimeter (1 mm³) has a mass of one gram (1 g).1 gmm3=1 g1 mm3=103 kg109 m3=106 kgm31\ \frac{g}{mm^3} = \frac{1\ g}{1\ mm^3} = \frac{10^{-3}\ kg}{10^{-9}\ m^3} = 10^{6}\ \frac{kg}{m^3}
miligrams per cubic meterShow sourcemgm3\frac{mg}{m^3}mg/m³1000000Derived density unit in the SI system. The substance has a density of one miligram per cubic meter (1 mg/m³) if a homogeneous sample with volume of one cubic meter (1 m³) has a mass of one miligram (1 mg).1 mgm3=1 mg1 m3=106 kg1 m3=106 kgm3=1 ngm31\ \frac{mg}{m^3} = \frac{1\ mg}{1\ m^3} = \frac{10^{-6}\ kg}{1\ m^3} = 10^{-6}\ \frac{kg}{m^3} = 1\ \frac{ng}{m^3}
miligrams per cubic decimeterShow sourcemgdm3\frac{mg}{dm^3}mg/dm³1000Derived density unit in the SI system. The substance has a density of one miligram per cubic decimeter (1 mg/dm³) if a homogeneous sample with volume of one cubic decimeter (1 dm³) has a mass of one miligram (1 mg).1 mgdm3=1 mg1 dm3=106 kg103 m3=0.001 kgm3=1 gm31\ \frac{mg}{dm^3} = \frac{1\ mg}{1\ dm^3} = \frac{10^{-6}\ kg}{10^{-3}\ m^3} = 0.001\ \frac{kg}{m^3} = 1\ \frac{g}{m^3}
miligrams per cubic centimeterShow sourcemgcm3\frac{mg}{cm^3}mg/cm³1Derived density unit in the SI system. The substance has a density of one miligram per cubic centimeter (1 mg/cm³) if a homogeneous sample with volume of one cubic centimeter (1 cm³) has a mass of one miligram (1 mg).1 mgcm3=1 mg1 cm3=106 kg106 m3=1 kgm31\ \frac{mg}{cm^3} = \frac{1\ mg}{1\ cm^3} = \frac{\cancel{10^{-6}}\ kg}{\cancel{10^{-6}}\ m^3} = 1\ \frac{kg}{m^3}
miligrams per cubic milimeterShow sourcemgmm3\frac{mg}{mm^3}mg/mm³0.001Derived density unit in the SI system. The substance has a density of one miligram per cubic milimeter (1 mg/mm³) if a homogeneous sample with volume of one cubic milimeter (1 mm³) has a mass of one miligram (1 mg).1 mgmm3=1 mg1 mm3=106 kg109 m3=1000 kgm31\ \frac{mg}{mm^3} = \frac{1\ mg}{1\ mm^3} = \frac{\cancel{10^{-6}}\ kg}{\cancel{10^{-9}}\ m^3} = 1000\ \frac{kg}{m^3}

metric per liter#

UnitSymbolSymbol
(plain text)
ValueNotes
exograms per literShow sourceEgl\frac{Eg}{l}Eg/l1×10-18Derived density unit created by dividing mass unit exogram (1 Eg) and volume unit litre (1 l). The substance has a density of one exogram per litre (1 Eg/l) if a homogeneous sample with volume of one litre (1 l) has a mass of one exogram (1 Eg).1 Egl=1015 kg103 m3=1018 kgm31\ \frac{Eg}{l} = \frac{10^{15}\ kg}{10^{-3}\ m^3} = 10^{18}\ \frac{kg}{m^3}
teragrams per literShow sourceTgl\frac{Tg}{l}Tg/l1×10-12Derived density unit created by dividing mass unit teragram (1 Tg) and volume unit litre (1 l). The substance has a density of one teragram per litre (1 Tg/l) if a homogeneous sample with volume of one litre (1 l) has a mass of one teragram (1 Tg).1 Tgl=109 kg103 m3=1012 kgm31\ \frac{Tg}{l} = \frac{10^{9}\ kg}{10^{-3}\ m^3} = 10^{12}\ \frac{kg}{m^3}
gigagrams per literShow sourceGgl\frac{Gg}{l}Gg/l1×10-9Derived density unit created by dividing mass unit gigagram (1 Gg) and volume unit litre (1 l). The substance has a density of one gigagram per litre (1 Gg/l) if a homogeneous sample with volume of one litre (1 l) has a mass of one gigagram (1 Gg).1 Ggl=106 kg103 m3=109 kgm31\ \frac{Gg}{l} = \frac{10^{6}\ kg}{10^{-3}\ m^3} = 10^{9}\ \frac{kg}{m^3}
megagrams per literShow sourceMgl\frac{Mg}{l}Mg/l0.000001Derived density unit created by dividing mass unit megagram (1 Mg) and volume unit litre (1 l). The substance has a density of one megagram per litre (1 Mg/l) if a homogeneous sample with volume of one litre (1 l) has a mass of one megagram (1 Mg).
kilograms per literShow sourcekgl\frac{kg}{l}kg/l0.001Derived density unit created by dividing mass unit kilogram (1 kg) and volume unit litre (1 l). The substance has a density of one kilogram per litre (1 kg/l) if a homogeneous sample with volume of one litre (1 l) has a mass of one kilogram (1 kg).1 kgl=1 kgdm3=1 gcm3=1000 kgm31\ \frac{kg}{l} = 1\ \frac{kg}{dm^3} = 1\ \frac{g}{cm^3} = 1000\ \frac{kg}{m^3}
hektograms per literShow sourcehgl\frac{hg}{l}hg/l0.01Derived density unit created by dividing mass unit hectogram (1 hg) and volume unit litre (1 l). The substance has a density of one hectogram per litre (1 hg/l) if a homogeneous sample with volume of one litre (1 l) has a mass of one hectogram (100 g).1 hgl=0.1 kg0.001 m3=100 kgm31\ \frac{hg}{l} = \frac{0.1\ kg}{0.001\ m^3} = 100\ \frac{kg}{m^3}
dekagrams per literShow sourcedagl\frac{dag}{l}dg/l0.1Derived density unit created by dividing mass unit decagram (1 dag) and volume unit litre (1 l). The substance has a density of one decagram per litre (1 dag/l) if a homogeneous sample with volume of one litre (1 l) has a mass of one decagram (10 g).
grams per literShow sourcegl\frac{g}{l}g/l1Derived density unit created by dividing mass unit gram (1 g) and volume unit litre (1 l). The substance has a density of one gram per litre (1 g/l) if a homogeneous sample with volume of one litre (1 l) has a mass of one gram (1 g).1 gl=1 gdm3=0.001 kg0.001 m3=1 kgm31\ \frac{g}{l} = 1\ \frac{g}{dm^3} = \frac{\cancel{0.001}\ kg}{\cancel{0.001}\ m^3} = 1\ \frac{kg}{m^3}
decigrams per literShow sourcedgl\frac{dg}{l}dg/l10Derived density unit created by dividing mass unit decigram (1 dg) and volume unit litre (1 l). The substance has a density of one decigram per litre (1 dg/l) if a homogeneous sample with volume of one litre (1 l) has a mass of one decigram (1/10 g).1 dgl=102 kg103 m3=0.1 kgm31\ \frac{dg}{l} = \frac{10^{-2}\ kg}{10^{-3}\ m^3} = 0.1\ \frac{kg}{m^3}
centigrams per literShow sourcecgl\frac{cg}{l}cg/l100Derived density unit created by dividing mass unit centigram (1 cg) and volume unit litre (1 l). The substance has a density of one centigram per litre (1 cg/l) if a homogeneous sample with volume of one litre (1 l) has a mass of one centigram (1/100 g).1 cgl=105 kg103 m3=0.01 kgm31\ \frac{cg}{l} = \frac{10^{-5}\ kg}{10^{-3}\ m^3} = 0.01\ \frac{kg}{m^3}
miligrams per literShow sourcemgl\frac{mg}{l}mg/l1000Derived density unit created by dividing mass unit miligram (1 mg) and volume unit litre (1 l). The substance has a density of one miligram per litre (1 mg/l) if a homogeneous sample with volume of one litre (1 l) has a mass of one miligram (1 mg).1 mgl=1 mgdm3=1 gm3=0.001 kgm31\ \frac{mg}{l} = 1\ \frac{mg}{dm^3} = 1\ \frac{g}{m^3} = 0.001\ \frac{kg}{m^3}
micrograms per literShow sourceμgl\frac{\mu g}{l}µg/l1000000Derived density unit created by dividing mass unit microgram (1 µg) and volume unit litre (1 l). The substance has a density of one microgram per litre (1 µg/l) if a homogeneous sample with volume of one litre (1 l) has a mass of one microgram i.e. one millionth of gram (10-6 g).1 μgl=109 kg103 m3=106 kgm31\ \frac{\mu g}{l} = \frac{10^{-9}\ kg}{10^{-3}\ m^3} = 10^{6}\ \frac{kg}{m^3}
nanograms per literShow sourcengl\frac{ng}{l}ng/l1000000000Derived density unit created by dividing mass unit nanogram (1 ng) and volume unit litre (1 l). The substance has a density of one nanogram per litre (1 ng/l) if a homogeneous sample with volume of one litre (1 l) has a mass of one nanogram i.e. one billionth of gram (10-9 g).1 ngl=1012 kg103 m3=109 kgm31\ \frac{ng}{l} = \frac{10^{-12}\ kg}{10^{-3}\ m^3} = 10^{9}\ \frac{kg}{m^3}
picograms per literShow sourcepgl\frac{pg}{l}ng/l1×1012Derived density unit created by dividing mass unit picogram (1 pg) and volume unit litre (1 l). The substance has a density of one picogram per litre (1 pg/l) if a homogeneous sample with volume of one litre (1 l) has a mass of one picogram i.e. one trillionth of gram (10-12 g).1 pgl=1015 kg103 m3=1012 kgm31\ \frac{pg}{l} = \frac{10^{-15}\ kg}{10^{-3}\ m^3} = 10^{12}\ \frac{kg}{m^3}
femtograms per literShow sourcefgl\frac{fg}{l}fg/l1×1015Derived density unit created by dividing mass unit femtogram (1 fg) and volume unit litre (1 l). The substance has a density of one femtogram per litre (1 fg/l) if a homogeneous sample with volume of one litre (1 l) has a mass of one femtogram i.e. one quadrillionth of gram (10-15 g).1 fgl=1018 kg103 m3=1015 kgm31\ \frac{fg}{l} = \frac{10^{-18}\ kg}{10^{-3}\ m^3} = 10^{15}\ \frac{kg}{m^3}
attograms per literShow sourceagl\frac{ag}{l}ag/l1×1018Derived density unit created by dividing mass unit attogram (1 ag) and volume unit litre (1 l). The substance has a density of one attogram per litre (1 ag/l) if a homogeneous sample with volume of one litre (1 l) has a mass of one attogram i.e. one sextillionth of gram (10-18 g).1 agl=1021 kg103 m3=1018 kgm31\ \frac{ag}{l} = \frac{10^{-21}\ kg}{10^{-3}\ m^3} = 10^{18}\ \frac{kg}{m^3}

imperial#

UnitSymbolSymbol
(plain text)
ValueNotes
pounds per cubic inchShow sourcelbin3\frac{lb}{in^3}lb/in³0.000036127Imperial density unit created by dividing mass unit pound (1 lb) and volume cubic inch (1 cu in). The substance has a density of one pound per cubic inch (1 lb/in³) if a homogeneous sample with volume of one cubic inch (1 cu in) has a mass of one pound.1 lbin3=0.45359237 kg(2.54 cm)3=0.45359237 kg1.6387064105 m3=27679.9047102031212 kgm31\ \frac{lb}{in^3} = \frac{0.45359237\ kg}{\left(2.54\ cm\right)^3} = \frac{0.45359237\ kg}{1.6387064 \cdot 10^{-5}\ m^3} = 27679.9047102031212\ \frac{kg}{m^3}
pounds per cubic footShow sourcelbft3\frac{lb}{ft^3}lb/ft³0.062427961Imperial density unit created by dividing mass unit pound (1 lb) and volume cubic foot (1 cu ft). The substance has a density of one pound per cubic foot (1 lb/ft³) if a homogeneous sample with volume of one cubic foot (1 cu ft) has a mass of one pound.1 lbft3=1 lb(12 in)3=11728lbin31\ \frac{lb}{ft^3} = \frac{1\ lb}{\left(12\ in\right)^3} = \frac{1}{1728} \frac{lb}{in^3}
pounds per cubic yardShow sourcelbyd3\frac{lb}{yd^3}lb/yd³0.561851645Imperial density unit created by dividing mass unit pound (1 lb) and volume cubic yard (1 cu yd). The substance has a density of one pound per cubic yard (1 lb/yd³) if a homogeneous sample with volume of one cubic yard (1 cu yd) has a mass of one pound.1 lbyd3=1 lb(3ft)3=127lbft31\ \frac{lb}{yd^3} = \frac{1\ lb}{\left(3 ft\right)^3} = \frac{1}{27} \frac{lb}{ft^3}
pounds per gallon (US)Show sourcelbgalUS\frac{lb}{gal_{US}}lb/gal (US)0.008345404Equivalent to one two hundred thirty-oneth part of pound per cubic inch (1/231 lb/in³). See the pound per cubic inch unit for more.1 lbgalUS=1231 lbin31\ \frac{lb}{gal_{US}} = \frac{1}{231}\ \frac{lb}{in^3}
pounds per gallon (UK)Show sourcelbgalUK\frac{lb}{gal_{UK}}lb/gal (UK)0.010022413Imperial density unit created by dividing mass unit pound (1 lb) and british volume unit gallon (1 gal UK). The substance has a density of one pound per gallon UK (1 lb/gal UK) if a homogeneous sample with volume of one british gallon (1 gal UK) has a mass of one pound.1 lbgalUK=0.45359237 kg4.54609 l=0.099776372663101698 kgm31\ \frac{lb}{gal_{UK}} = \frac{0.45359237\ kg}{4.54609\ l} = 0.099776372663101698\ \frac{kg}{m^3}
ounces per cubic inchShow sourceozin3\frac{oz}{in^3}oz/in³0.000578037Equivalent to one sixteenth of pound per cubic inch (1/16 lb/in³). See the pound per cubic inch unit for more.1 ozin3=1/16 lb1 in3=116lbin31\ \frac{oz}{in^3} = \frac{1/16\ lb}{1\ in^3} = \frac{1}{16} \frac{lb}{in^3}
ounces per cubic footShow sourceozft3\frac{oz}{ft^3}oz/ft³0.998847369Equivalent to one sixteenth of pound per cubic foot (1/16 lb/ft³). See the pound per cubic foot unit for more.1 ozft3=1/16 lb1 ft3=116lbft31\ \frac{oz}{ft^3} = \frac{1/16\ lb}{1\ ft^3} = \frac{1}{16} \frac{lb}{ft^3}
ounces per gallon (US)Show sourceozgalUS\frac{oz}{gal_{US}}oz/gal (US)0.133526471Equivalent to one sixteenth of pound per US gallon (1/16 lb/gal US). See the pound per gallon US unit for more.1 ozgalUS=1/16 lb1 galUS=116lbgalUS1\ \frac{oz}{gal_{US}} = \frac{1/16\ lb}{1\ gal_{US}} = \frac{1}{16} \frac{lb}{gal_{US}}
ounces per gallon (UK)Show sourceozgalUK\frac{oz}{gal_{UK}}oz/gal (UK)0.160358606Equivalent to one sixteenth of pound per UK gallon (1/16 lb/gal UK). See the pound per gallon UK unit for more.1 ozgalUK=1/16 lb1 galUK=116lbgalUK1\ \frac{oz}{gal_{UK}} = \frac{1/16\ lb}{1\ gal_{UK}} = \frac{1}{16} \frac{lb}{gal_{UK}}
grains per gallon (US)Show sourcegrgalUS\frac{gr}{gal_{US}}gr/gal (US)58.417831164Equivalent to 1/7000 of pound per US gallon (1/7000 lb/gal US). See the pound per gallon US unit for more.1 grgalUS=1/7000 lb1 galUS=17000lbgalUS1\ \frac{gr}{gal_{US}} = \frac{1/7000\ lb}{1\ gal_{US}} = \frac{1}{7000} \frac{lb}{gal_{US}}
grains per gallon (UK)Show sourcegrgalUK\frac{gr}{gal_{UK}}gr/gal (UK)70.156889985Equivalent to 1/7000 of pound per UK gallon (1/7000 lb/gal UK). See the pound per gallon UK unit for more.1 grgalUK=1/7000 lb1 galUK=17000lbgalUK1\ \frac{gr}{gal_{UK}} = \frac{1/7000\ lb}{1\ gal_{UK}} = \frac{1}{7000} \frac{lb}{gal_{UK}}
grains per cubic footShow sourcegrft3\frac{gr}{ft^3}gr/ft³436.995724033Equivalent to 1/7000 of pund per cubic foot (1/7000 lb/ft³). See the pound per cubic foot unit for more.1 grft3=1/7000 lb1 ft3=17000lbft31\ \frac{gr}{ft^3} = \frac{1/7000\ lb}{1\ ft^3} = \frac{1}{7000} \frac{lb}{ft^3}
tons (short) per cubic yardShow sourcetonshortyd3\frac{ton_{short}}{yd^3}ton (short) / yd³0.000280926Equivalent to two thausand pounds per cubic foot (2000 lb/ft³). See the pound per cubic foot unit for more.1 sh tonyd3=2000 lbs1 yd3=2000 lbsyd31\ \frac{sh\ ton}{yd^3} = \frac{2000\ lbs}{1\ yd^3} = 2000\ \frac{lbs}{yd^3}
tons (long) per cubic yardShow sourcetonlongyd3\frac{ton_{long}}{yd^3}ton (long) / yd³0.000250827Equivalent to two thausand pounds per cubic yard (2000 lb/yd³). See the pound per cubic foot unit for more.1 lng tonyd3=2240 lbs1 yd3=2240 lbsyd31\ \frac{lng\ ton}{yd^3} = \frac{2240\ lbs}{1\ yd^3} = 2240\ \frac{lbs}{yd^3}
slugs per cubic footShow sourceslugft3\frac{slug}{ft^3}slug/ft³0.00194032Historic density unit in gravitional foot-pound-second system (FPS) created by dividing mass unit slug (1 slug) and volume cubic foot (1 cu ft). One slug per cubic foot is approximately equal to thirty-two pounds per cubic foot (~32.174 lb/ft³).1 slugft3=1 lb×acceleration due to gravitys2ftft31 lb×9.80665 ms2s20.3048 mft332.1740485564304462 lbft3\begin{aligned}1\ \dfrac{slug}{ft^3} &= \dfrac{1\ lb \times \text{acceleration due to gravity} \cdot s^2}{ft \cdot ft^3} \approx \\&\approx \dfrac{1\ lb \times 9.80665\ \frac{\cancel{m}}{\cancel{s^2}} \cdot \cancel{s^2}}{0.3048\ \cancel{m} \cdot ft^3} \approx \\&\approx 32.1740485564304462\ \dfrac{lb}{ft^3}\end{aligned}
psis per 1000 footsShow sourcepsi1000ft\frac{psi}{1000ft}psi/1000ft0.433527504One twelve-thausandth of pound per cubic inch (1/12000 lb/ft³). See the pound per cubic foot unit for more.1 psi1000 ft=1 lb/in21000 12 in=112000 lbin31\ \frac{psi}{1000\ ft} = \frac{1\ lb/in^2}{1000\ \cdot 12\ in} = \frac{1}{12000}\ \frac{lb}{in^3}

other#

UnitSymbolSymbol
(plain text)
ValueNotes
earth density (mean)Show sourcedearthd_{earth}earth density0.000181225Average Earth density.dEarth5518.00248310111749kgm3d_{Earth} \approx 5518.00248310111749 \frac{kg}{m^3}
water density (0 °C, solid)Show sourcedH2O (0C)d_{H_2O\ (0 ^\circ C)}water (0 °C)0.000100018Water density at temperature of zero degrees celsius (0°C) under normal pressure (1013.25 hPa).dH2O (0C)999.82kgm3d_{H_2O\ (0^{\circ}C)} \approx 999.82 \frac{kg}{m^3}
water density (20 °C)Show sourcedH2O (20C)d_{H_2O\ (20 ^\circ C)}water (20 °C)0.000100171Water density at temperature of twenty degree celsius (20°C) under normal pressure (1013.25 hPa).dH2O (20C)998.29kgm3d_{H_2O\ (20^{\circ}C)} \approx 998.29 \frac{kg}{m^3}
water density (4 °C)Show sourcedH2O (4C)d_{H_2O\ (4 ^\circ C)}water (4 °C)0.001Water density at temperature of four degree celsius (4°C) under normal pressure (1013.25 hPa).dH2O (4C)1000kgm3d_{H_2O\ (4^{\circ}C)} \approx 1000 \frac{kg}{m^3}

Some facts#

  • ⓘ Remember: Density is the physical quantity that determines the ratio beetwen the mass and the volume that mass occupies.
  • We usually denote the density by d or the small Greek letter ρ (pronunciation: rho).
  • If the sample body has mass m and it occupies volume V, then the density of the substance from which it is composed can be calculated using the following formula:
    d=mVd = \dfrac{m}{V}
    gdzie:
    • d = density,
    • m = mass,
    • V = volume.
  • The density unit in SI system is kilogram per cubic meter:
    kgm3\dfrac{kg}{m^3}
  • Density is a feature of a particular substance. An example of a relatively high density substance is steel. Example of relatively small density is styrofoam, .
    ⓘ Example: If we grab a small steel ball in hand, we can easily feel it's weight. If we grab anologous (i.e. with the same size), but made of styrofoam ball in second hand, then we notice that it is much lighter than the previous one. This is because steel has a much higher density than styrofoam.
  • Substances with high density are good acoustic insulators. For example, making the walls of a room with a thick concrete layer (high density material) will cause what is going on inside to be very poorly audible on the outside.
  • Acoustic insulation does not go hand in hand with thermal insulation. For example: styrofoam (very low density material) is known as a very good thermal insulator, but is unusable as an acoustic insulator.
  • ⚠ WARNING! Substances can change their density depending on temperature and pressure. Therefore density tables also contain the conditions in which they were measured.

How to convert#

  • Enter the number to field "value" - enter the NUMBER only, no other words, symbols or unit names. You can use dot (.) or comma (,) to enter fractions.
    Examples:
    • 1000000
    • 123,23
    • 999.99999
  • Find and select your starting unit in field "unit". Some unit calculators have huge number of different units to select from - it's just how complicated our world is...
  • And... you got the result in the table below. You'll find several results for many different units - we show you all results we know at once. Just find the one you're looking for.

Tags and links to this website#

What tags this calculator has#

Permalink#

This is permalink. Permalink is the link containing your input data. Just copy it and share your work with friends:

Links to external sites (leaving Calculla?)#

JavaScript failed !
So this is static version of this website.
This website works a lot better in JavaScript enabled browser.
Please enable JavaScript.