Table of basic physical and chemical constants
Table shows common constants used in physics and chemistry.

Beta version#

This online calculator is currently under heavy development. It may or it may NOT work correctly.
You CAN try to use it. You CAN even get the proper results.
However, please VERIFY all results on your own, as the level of completion of this item is NOT CONFIRMED.
Feel free to send any ideas and comments !

Basic physical and chemical constants#

ConstantSymbol or definitional formulaValue
Speed of light in vacuumShow sourceccShow source2,9979250108ms2,9979250 \cdot 10^8 \frac{m}{s}
Elementary chargeShow sourceeeShow source1,6021761019C1,602176 \cdot 10^{-19} C
Avogadro's numberShow sourceNAN_{A}Show source6,02216910231mol6,022169 \cdot 10^{23} \frac{1}{mol}
Atomic mass constantShow sourceudu^dShow source1,6605311027kg1,660531 \cdot 10^{-27} kg
Mass of electronShow sourcemem_eShow source9,1095581031kg9,109558 \cdot 10^{-31} kg
Mass of protonShow sourcempm_pShow source1,6726141027kg1,672614 \cdot 10^{-27} kg
Faraday's constantShow sourceFFShow source9,648670104Cmol9,648670 \cdot 10^{4} \frac{C}{mol}
Planck's constantShow sourcehhShow source6,6261961034Js6,626196 \cdot 10^{-34} J \cdot s
Fine structure constantShow sourceα\alphaShow source7,2973511037,297351 \cdot 10^{-3}
Charge to mass ratio of the electronShow sourceeme\frac{e}{m_e}Show source1,75880281011Ckg1,7588028 \cdot 10^{11} \frac{C}{kg}
Magnetic flux quantumShow sourceϕ0=h2e\phi_0 = \frac{h}{2e}Show source2,06785381015Wb2,0678538 \cdot 10^{-15} Wb
Rydberg's constantShow sourceRR_{\infty}Show source1,097373121071m1,09737312 \cdot 10^{7} \frac{1}{m}
Bohr radiusShow sourcea0a_0Show source5,29177151011m5,2917715 \cdot 10^{-11} m
Compton wavelength of the electronShow sourceλc\lambda_cShow source2,42630961012m2,4263096 \cdot 10^{-12} m
Electron radiusShow sourcerer_eShow source2,8179391015m2,817939 \cdot 10^{-15} m
Compton wavelength of the protonShow sourceλp{\lambda}_pShow source1,32144091015m1,3214409 \cdot 10^{-15} m
Gyromagnetic ratio of the proton with diamagnetic H2O correctionShow sourceγp{\gamma}_pShow source2,6751965108radsT2,6751965 \cdot 10^{8} \frac{rad}{s} \cdot T
Gyromagnetic ratio of the protonShow sourceγp\gamma^{'}_{p}Show source2,6751270108radsT2,6751270 \cdot 10^{8} \frac{rad}{s} \cdot T
Bohr magnetonShow sourceμB\mu BShow source9,2740961024JT9,274096 \cdot 10^{-24} \frac{J}{T}
Nuclear magnetonShow sourceμN\mu_NShow source5,0509511027JT5,050951 \cdot 10^{-27} \frac{J}{T}
Magnetic momentic of the protonShow sourceμp\mu_pShow source1,41062031026JT1,4106203 \cdot 10^{-26} \frac{J}{T}
Gas constantShow sourceRRShow source8,31434JmolK8,31434 \frac{J}{mol} \cdot K
Boltzmann's constantShow sourcekkShow source1,3806221023JK1,380622 \cdot 10^{-23} \frac{J}{K}
First radiation constantShow sourcec1c_1Show source4,9925791024Jm4,992579 \cdot 10^{-24} J \cdot m
Second radiation constantShow sourcec2c_2Show source1,438833102mK1,438833 \cdot 10^{-2} m \cdot K
Stefan-Blotzmann's constantShow sourceσ\sigmaShow source5,66961108Wm2K45,66961 \cdot 10^{-8} \frac{W}{m^2} \cdot K^4
Gravitional constantShow sourceGGShow source6,67321011Nm2kg26,6732 \cdot 10^{-11} \frac{N}{m^2} \cdot kg^2
Molar volume of gas under normal conditionShow sourceV0V_0Show source2,24136102m3mol2,24136 \cdot 10^{-2} \frac{m^3}{mol}
Vacuum permittivityShow sourceϵ0\epsilon_0Show source8,85421012Fm8,8542 \cdot 10^{-12} \frac{F}{m}

Some facts#

  • Physical constants (sometimes called chemical depending on context) are physical quantities, whose value doesn't depend on time or space. Simply put, value of physical constant is always the same no matter when and where it is measured.
  • There are many physical equations containing one or more physical constants. Often they play a role of proportionality coefficient. Examples of such equations may be:
    • Clapeyron's equation (perfect gas equation):
      pv=nRTpv = n\fbox{R}T
      • p = pressure,
      • v = volume,
      • n = number of moles,
      • T = termodynamic temperature,
      • R = gas constant,

    • the force of gravity, i.e. the force that attracts two bodies with masses:
      F=G×m1×m2r2F = \fbox{G} \times \dfrac{m_1 \times m_2}{r^2}
      • F = force of gravity,
      • G = gravitional constant,
      • m1 = mass of the first body,
      • m2 = mass of the second body,
      • r = distance between bodies,

    • photon's energy:
      Ephoton=h×cλE_{photon} = \dfrac{\fbox{h} \times \fbox{c}}{ \lambda}
      • h = Planck's constant,
      • c = speed of light in vacuum,
      • λ = wavelength.

Tags and links to this website#

What tags this calculator has#


This is permalink. Permalink is the link containing your input data. Just copy it and share your work with friends:

Links to external sites (leaving Calculla?)#

JavaScript failed !
So this is static version of this website.
This website works a lot better in JavaScript enabled browser.
Please enable JavaScript.