Mathematical tables: trigonometry identities formulas
Tables show common trigonometric identities and formulas such as Pythagorean trigonometric identity, sine of half angle formula, etc.

Beta version#

BETA TEST VERSION OF THIS ITEM
This online calculator is currently under heavy development. It may or it may NOT work correctly.
You CAN try to use it. You CAN even get the proper results.
However, please VERIFY all results on your own, as the level of completion of this item is NOT CONFIRMED.
Feel free to send any ideas and comments !
⌛ Loading...

Basic trigonometry identities#

NameFormulaLegend
Tangent definition using sine and cosine functionsShow sourcetan(α)=sin(α)cos(α)tan(\alpha) = \frac{sin(\alpha)}{cos(\alpha)}
  • α\alpha - the value of angle,
  • tan - the tangent of the angle function,
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function.
Cotangent definition using cosine and sinefunctionsShow sourcecot(α)=cos(α)sin(α)cot(\alpha) = \frac{cos(\alpha)}{sin(\alpha)}
  • α\alpha - the value of angle,
  • cot - the cotangent of the angle function,
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function.
Tangent as cotangent inverseShow sourcetan(α)=1cot(α)tan(\alpha) = \frac{1}{cot(\alpha)}
  • α\alpha - the value of angle,
  • tan - the tangent of the angle function,
  • cot - the cotangent of the angle function.
Cotangent as tangent inverseShow sourcecot(α)=1tan(α)cot(\alpha) = \frac{1}{tan(\alpha)}
  • α\alpha - the value of angle,
  • tan - the tangent of the angle function,
  • cot - the cotangent of the angle function.
Pythagorean trigonometric identityShow sourcesin2(α)+cos2(α)=1sin^2(\alpha) + cos^2(\alpha) = 1
  • α\alpha - the value of angle,
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function.
Multiplication of tangent and cotangent of the same angleShow sourcetan(α)cot(α)=1tan(\alpha) \cdot cot(\alpha) = 1
  • α\alpha - the value of angle,
  • tan - the tangent of the angle function,
  • cot - the cotangent of the angle function.

Trigonometry: double-angle identities#

NameFormulaLegend
Sine of double angleShow sourcesin(2α)=2sin(α)cos(α)sin(2 \alpha) = 2 sin(\alpha) \cdot cos(\alpha)
  • α\alpha - the value of angle,
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function.
Cosine of double angleShow sourcecos(2α)=cos2(α)sin2(α)=2cos2(α)1cos(2 \alpha) = cos^2(\alpha) - sin^2(\alpha) = 2 cos^2(\alpha) - 1
  • α\alpha - the value of angle,
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function.
Tangent of double angleShow sourcetan(2α)=2tan(α)1tan2(α)tan(2 \alpha) = \frac{2 tan(\alpha)}{1 - tan^2(\alpha)}
  • α\alpha - the value of angle,
  • tan - the tangent of the angle function.
Cotangent of double angleShow sourcecot(2α)=cot2(α)12cot(α)cot(2 \alpha) = \frac{cot^2(\alpha) - 1}{2 cot(\alpha)}
  • α\alpha - the value of angle,
  • cot - the cotangent of the angle function.

Half-angle identities#

NameFormulaLegend
Sine of half-angleShow sourcesin(α2)=±1cos(α)2sin\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 - cos(\alpha)}{2}}
  • α\alpha - the value of angle,
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function.
Cosine of half-angleShow sourcecos(α2)=±1+cos(α)2cos\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 + cos(\alpha)}{2}}
  • α\alpha - the value of angle,
  • cos - the cosine of the angle function.
Tangent of half-angleShow sourcetan(α2)=1cos(α)sin(α)tan\left(\frac{\alpha}{2}\right) = \frac{1 - cos(\alpha)}{sin(\alpha)}
  • α\alpha - the value of angle,
  • tan - the tangent of the angle function,
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function.
Cotangent of half-angleShow sourcecot(α2)=1+cos(α)sin(α)cot\left(\frac{\alpha}{2}\right) = \frac{1 + cos(\alpha)}{sin(\alpha)}
  • α\alpha - the value of angle,
  • cot - the cotangent of the angle function,
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function.

Angle-sum identities#

NameFormulaLegend
Sine of angles sumShow sourcesin(α+β)=sin(α)cos(β)+cos(α)sin(β)sin(\alpha + \beta) = sin(\alpha) cos(\beta) + cos(\alpha) sin(\beta)
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle,
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function.
Cosine of angles sumShow sourcecos(α+β)=cos(α)cos(β)sin(α)sin(β)cos(\alpha + \beta) = cos(\alpha) cos(\beta) - sin(\alpha) sin(\beta)
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle,
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function.
Tangent of angles sumShow sourcetan(α+β)=tan(α)+tan(β)1tan(α)tan(β)tan(\alpha + \beta) = \frac{tan(\alpha) + tan(\beta)}{1 - tan(\alpha) \cdot tan(\beta)}
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle,
  • tan - the tangent of the angle function.
Cotangent of angles sumShow sourcecot(α+β)=cot(α)cot(β)1cot(α)+cot(β)cot(\alpha + \beta) = \frac{cot(\alpha) \cdot cot(\beta) - 1}{cot(\alpha) + cot(\beta)}
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle,
  • cot - the cotangent of the angle function.

Angle-difference identities#

NameFormulaLegend
Sine of angles differenceShow sourcesin(αβ)=sin(α)cos(β)cos(α)sin(β)sin(\alpha - \beta) = sin(\alpha) cos(\beta) - cos(\alpha) sin(\beta)
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle,
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function.
Cosine of angles differenceShow sourcecos(αβ)=cos(α)cos(β)+sin(α)sin(β)cos(\alpha - \beta) = cos(\alpha) cos(\beta) + sin(\alpha) sin(\beta)
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle,
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function.
Tangent of angles differenceShow sourcetan(αβ)=tan(α)tan(β)1+tan(α)tan(β)tan(\alpha - \beta) = \frac{tan(\alpha) - tan(\beta)}{1 + tan(\alpha) \cdot tan(\beta)}
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle,
  • tan - the tangent of the angle function.
Cotangent of angles differenceShow sourcecot(αβ)=cot(α)cot(β)+1cot(α)cot(β)cot(\alpha - \beta) = \frac{cot(\alpha) \cdot cot(\beta) + 1}{cot(\alpha) - cot(\beta)}
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle,
  • cot - the cotangent of the angle function.

Sum identities#

NameFormulaLegend
Sum of sinesShow sourcesin(α)+sin(β)=2sin(α+β2)cos(αβ2)sin(\alpha) + sin(\beta) = 2 sin\left(\frac{\alpha + \beta}{2}\right) \cdot cos\left(\frac{\alpha - \beta}{2}\right)
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle,
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function.
Sum of cosinesShow sourcecos(α)+cos(β)=2cos(α+β2)cos(αβ2)cos(\alpha) + cos(\beta) = 2 cos\left(\frac{\alpha + \beta}{2}\right) \cdot cos\left(\frac{\alpha - \beta}{2}\right)
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle,
  • cos - the cosine of the angle function.
Sum of tangentsShow sourcetan(α)+tan(β)=sin(α+β)cos(α)cos(β)tan(\alpha) + tan(\beta) = \frac{sin(\alpha + \beta)}{cos(\alpha) \cdot cos(\beta)}
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle,
  • tan - the tangent of the angle function,
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function.
Sum of tangentsShow sourcecot(α)+cot(β)=sin(α+β)sin(α)sin(β)cot(\alpha) + cot(\beta) = \frac{sin(\alpha + \beta)}{sin(\alpha) \cdot sin(\beta)}
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle,
  • cot - the cotangent of the angle function,
  • sin - the sine of the angle function.

Difference identities#

NameFormulaLegend
Difference of sinesShow sourcesin(α)sin(β)=2sin(αβ2)cos(α+β2)sin(\alpha) - sin(\beta) = 2 sin\left(\frac{\alpha - \beta}{2}\right) \cdot cos\left(\frac{\alpha + \beta}{2}\right)
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle,
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function.
Difference of cosinesShow sourcecos(α)cos(β)=2sin(α+β2)sin(αβ2)cos(\alpha) - cos(\beta) = -2 sin\left(\frac{\alpha + \beta}{2}\right) \cdot sin\left(\frac{\alpha - \beta}{2}\right)
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle,
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function.
Difference of tangentsShow sourcetan(α)tan(β)=sin(αβ)cos(α)cos(β)tan(\alpha) - tan(\beta) = \frac{sin(\alpha - \beta)}{cos(\alpha) \cdot cos(\beta)}
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle,
  • tan - the tangent of the angle function,
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function.
Difference of tangentsShow sourcecot(α)cot(β)=sin(αβ)sin(α)sin(β)cot(\alpha) - cot(\beta) = \frac{sin(\alpha - \beta)}{sin(\alpha) \cdot sin(\beta)}
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle,
  • cot - the cotangent of the angle function,
  • sin - the sine of the angle function.

Periodicity of the trigonometric functions#

NameFormulaLegend
Periodicity of the sine functionShow sourcesin(α)=sin(α+2kπ)sin(\alpha) = sin(\alpha + 2 k \pi)
  • α\alpha - the value of angle,
  • sin - the sine of the angle function.
Periodicity of the cosine functionShow sourcecos(α)=cos(α+2kπ)cos(\alpha) = cos(\alpha + 2 k \pi)
  • α\alpha - the value of angle,
  • cos - the cosine of the angle function.
Periodicity of the tangent functionShow sourcetan(α)=tan(α+kπ)tan(\alpha) = tan(\alpha + k \pi)
  • α\alpha - the value of angle,
  • tan - the tangent of the angle function.
Periodicity of the cotangent functionShow sourcecot(α)=cot(α+kπ)cot(\alpha) = cot(\alpha + k \pi)
  • α\alpha - the value of angle,
  • cot - the cotangent of the angle function.

Trigonometric functions in cosine representation#

NameFormulaLegend
Sine in cosine formShow sourcesin(α)=1cos2(α)\left|sin(\alpha)\right| = \sqrt{1 - cos^2(\alpha)}
  • α\alpha - the value of angle,
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function.
Tangent in cosine formShow sourcetan(α)=1cos2(α)cos(α)\left|tan(\alpha)\right| = \frac{\sqrt{1 - cos^2(\alpha)}}{|cos(\alpha)|}
  • α\alpha - the value of angle,
  • tan - the tangent of the angle function,
  • cos - the cosine of the angle function.
Cotangent in cosine formShow sourcecot(α)=cos(α)1cos2(α)\left|cot(\alpha)\right| = \frac{|cos(\alpha)|}{\sqrt{1 - cos^2(\alpha)}}
  • α\alpha - the value of angle,
  • cot - the cotangent of the angle function,
  • cos - the cosine of the angle function.

Trigonometric functions in sine representation#

NameFormulaLegend
Cosine in sine formShow sourcecos(α)=1sin2(α)\left|cos(\alpha)\right| = \sqrt{1 - sin^2(\alpha)}
  • α\alpha - the value of angle,
  • sin - the sine of the angle function.
Tangent in sine formShow sourcetan(α)=sin(α)1sin2(α)\left|tan(\alpha)\right| = \frac{|sin(\alpha)|}{\sqrt{1 - sin^2(\alpha)}}
  • α\alpha - the value of angle,
  • tan - the tangent of the angle function,
  • sin - the sine of the angle function.
Cotangent in sine formShow sourcecot(α)=1sin2(α)sin(α)\left|cot(\alpha)\right| = \frac{\sqrt{1 - sin^2(\alpha)}}{|sin(\alpha)|}
  • α\alpha - the value of angle,
  • cot - the cotangent of the angle function,
  • sin - the sine of the angle function.

Trigonometric functions in tangent of half-angle representation#

NameFormulaLegend
Sine in tangent of half angle formShow sourcesin(α)=2tan(α2)1+tan2(α2)sin(\alpha) = \frac{2 tan\left(\frac{\alpha}{2}\right)}{1 + tan^2\left(\frac{\alpha}{2}\right)}
  • α\alpha - the value of angle,
  • sin - the sine of the angle function,
  • tan - the tangent of the angle function.
Cosine in tangent of half angle formShow sourcecos(α)=1tan2(α2)1+tan2(α2)cos(\alpha) = \frac{1 - tan^2\left(\frac{\alpha}{2}\right)}{1 + tan^2\left(\frac{\alpha}{2}\right)}
  • α\alpha - the value of angle,
  • cos - the cosine of the angle function,
  • tan - the tangent of the angle function.
Tangent in tangent of half angle formShow sourcetan(α)=2tan(α2)1tan2(α2)tan(\alpha) = \frac{2 tan\left(\frac{\alpha}{2}\right)}{1 - tan^2\left(\frac{\alpha}{2}\right)}
  • α\alpha - the value of angle,
  • tan - the tangent of the angle function.

Co-functions to functions relation#

NameFormulaLegend
Sine to cosine relationShow sourcesin(α)=cos(π2α)sin(\alpha) = cos\left(\frac{\pi}{2} - \alpha\right)
  • α\alpha - the value of angle,
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function.
Cosine to sine relationShow sourcecos(α)=sin(π2α)cos(\alpha) = sin\left(\frac{\pi}{2} - \alpha\right)
  • α\alpha - the value of angle,
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function.
Tangent to cotangent relationShow sourcetan(α)=cot(π2α)tan(\alpha) = cot\left(\frac{\pi}{2} - \alpha\right)
  • α\alpha - the value of angle,
  • tan - the tangent of the angle function,
  • cot - the cotangent of the angle function.
Cotangent to tangent relationShow sourcecot(α)=tan(π2α)cot(\alpha) = tan\left(\frac{\pi}{2} - \alpha\right)
  • α\alpha - the value of angle,
  • tan - the tangent of the angle function,
  • cot - the cotangent of the angle function.

Parity of trigonometry functions#

NameFormulaLegend
Sine of negative angle (odd function)Show sourcesin(α)=sin(α)sin(-\alpha) = -sin(\alpha)
  • α\alpha - the value of angle,
  • sin - the sine of the angle function.
Cosine of negative angle (even function)Show sourcecos(α)=cos(α)cos(-\alpha) = cos(\alpha)
  • α\alpha - the value of angle,
  • cos - the cosine of the angle function.
Tangent of negative angle (odd function)Show sourcetan(α)=tan(α)tan(-\alpha) = -tan(\alpha)
  • α\alpha - the value of angle,
  • tan - the tangent of the angle function.
Cotangent of negative angle (odd function)Show sourcecot(α)=cot(α)cot(-\alpha) = -cot(\alpha)
  • α\alpha - the value of angle,
  • cot - the cotangent of the angle function.

Euler's formulas#

NameFormulaLegend
Euler formulaShow sourceeix=cos(x)+isin(x)e^{i x} = cos(x) + i \cdot sin(x)
Sine as complex number formShow sourcesin(x)=eixeix2isin(x) = \frac{e^{i x} - e^{-i x}}{2i}
Cosine as complex number formShow sourcecos(x)=eix+eix2cos(x) = \frac{e^{i x} + e^{-i x}}{2}
Tangent as complex number formShow sourcetan(x)=eixeix(eix+eix)itan(x) = \frac{e^{i x} - e^{-i x}}{\left(e^{i x} + e^{-i x}\right) i}
Cotangent as complex number formShow sourcecot(x)=eix+eixeixeixicot(x) = \frac{e^{i x} + e^{-i x}}{e^{i x} - e^{-i x}} i

De Moivre's formula#

NameFormulaLegend
De Moivre's formulaShow sourcecos(nx)+isin(nx)=(cos(x)+isin(x))ncos(n x) + i \cdot sin(n x) = \left(cos(x) + i \cdot sin(x)\right)^n
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function,
  • i - imaginary unit (complex number, root from -1).
De Moivre's formula (general)Show source[r(cos(x)+isin(x)]n=rn(cos(nx)+isin(nx))\left[r(cos(x) + i \cdot sin(x)\right]^n = r^n\left(cos(n x) + i \cdot sin(n x)\right)
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function,
  • i - imaginary unit (complex number, root from -1).

Product identities#

NameFormulaLegend
Product of two cosine functionsShow sourcecos(α)cos(β)=cos(αβ)+cos(α+β)2cos(\alpha) \cdot cos(\beta) = \frac{cos(\alpha - \beta) + cos(\alpha + \beta)}{2}
  • cos - the cosine of the angle function,
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle.
The product of two sine functionsShow sourcesin(α)sin(β)=cos(αβ)cos(α+β)2sin(\alpha) \cdot sin(\beta) = \frac{cos(\alpha - \beta) - cos(\alpha + \beta)}{2}
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function,
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle.
Sine and cosine productShow sourcesin(α)cos(β)=sin(αβ)+sin(α+β)2sin(\alpha) \cdot cos(\beta) = \frac{sin(\alpha - \beta) + sin(\alpha + \beta)}{2}
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function,
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle.
Product of three sine functionsShow sourcesin(α)sin(β)sin(γ)=sin(α+βγ)+sin(β+γα)+sin(γ+αβ)sin(α+β+γ)4sin(\alpha) \cdot sin(\beta) \cdot sin(\gamma) = \frac{sin(\alpha + \beta - \gamma) + sin(\beta + \gamma - \alpha) + sin(\gamma + \alpha - \beta) - sin(\alpha + \beta + \gamma)}{4}
  • sin - the sine of the angle function,
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle,
  • γ\gamma - the value of the third angle.
Product of two sine and one cosine functionsShow sourcesin(α)sin(β)cos(γ)=cos(α+βγ)+cos(β+γα)+cos(γ+αβ)cos(α+β+γ)4sin(\alpha) \cdot sin(\beta) \cdot cos(\gamma) = \frac{-cos(\alpha + \beta - \gamma) + cos(\beta + \gamma - \alpha) + cos(\gamma + \alpha - \beta) - cos(\alpha + \beta + \gamma)}{4}
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function,
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle,
  • γ\gamma - the value of the third angle.
Product of sine and two cosine functionsShow sourcesin(α)cos(β)cos(γ)=sin(α+βγ)sin(β+γα)+sin(γ+αβ)+sin(α+β+γ)4sin(\alpha) \cdot cos(\beta) \cdot cos(\gamma) = \frac{sin(\alpha + \beta - \gamma) - sin(\beta + \gamma - \alpha) + sin(\gamma + \alpha - \beta) + sin(\alpha + \beta + \gamma)}{4}
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function,
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle,
  • γ\gamma - the value of the third angle.
Product of three cosine functionsShow sourcecos(α)cos(β)cos(γ)=cos(α+βγ)+cos(β+γα)+cos(γ+αβ)+cos(α+β+γ)4cos(\alpha) \cdot cos(\beta) \cdot cos(\gamma) = \frac{cos(\alpha + \beta - \gamma) + cos(\beta + \gamma - \alpha) + cos(\gamma + \alpha - \beta) + cos(\alpha + \beta + \gamma)}{4}
  • cos - the cosine of the angle function,
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle,
  • γ\gamma - the value of the third angle.

Power identities#

NameFormulaLegend
Sine squaredShow sourcesin2(α)=1cos(2α)2sin^2(\alpha) = \frac{1 - cos(2 \alpha)}{2}
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function,
  • α\alpha - the value of angle.
Cosine squaredShow sourcecos2(α)=1+cos(2α)2cos^2(\alpha) = \frac{1 + cos(2 \alpha)}{2}
  • cos - the cosine of the angle function,
  • α\alpha - the value of angle.
Sine squared times cosine squaredShow sourcesin2(α)cos2(α)=1cos(4α)8=sin2(2α)4sin^2(\alpha) \cdot cos^2(\alpha) = \frac{1 - cos(4 \alpha)}{8} = \frac{sin^2(2 \alpha)}{4}
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function,
  • α\alpha - the value of angle.
Sine cubedShow sourcesin3(α)=3sin(α)sin(3α)4sin^3(\alpha) = \frac{3 sin(\alpha) - sin(3 \alpha)}{4}
  • sin - the sine of the angle function,
  • α\alpha - the value of angle.
Cosine cubedShow sourcecos3(α)=3cos(α)+cos(3α)4cos^3(\alpha) = \frac{3 cos(\alpha) + cos(3 \alpha)}{4}
  • cos - the cosine of the angle function,
  • α\alpha - the value of angle.
Sine to the third powerShow sourcesin4(α)=cos(4α)4cos(2α)+38sin^4(\alpha) = \frac{cos(4 \alpha) - 4 cos(2 \alpha) + 3}{8}
  • sin - the sine of the angle function,
  • cos - the cosine of the angle function,
  • α\alpha - the value of angle.
Cosine to the third powerShow sourcecos4(α)=cos(4α)+4cos(2α)+38cos^4(\alpha) = \frac{cos(4 \alpha) + 4 cos(2 \alpha) + 3}{8}
  • cos - the cosine of the angle function,
  • α\alpha - the value of angle.
Sinus squared differenceShow sourcesin2(α)sin2(β)=sin(α+β)sin(αβ)sin^2(\alpha) - sin^2(\beta) = sin(\alpha + \beta) \cdot sin(\alpha - \beta)
  • sin - the sine of the angle function,
  • α\alpha - the value of the first angle,
  • β\beta - the value of the second angle.

Some facts#

  • Trigonometric identities are different dependencies between various trigonometric functions.
  • Therefore, it is not a strict concept, and whether the expression is included in the trigonometric identity or not is purely practical.
  • Typical trigonometric identities include:
    • Pythagorean trigonometric identity:
      sin2(α)+cos2(α)=1sin^2(\alpha) + cos^2(\alpha) = 1
    • the expressions to present one trigonometric function using another one e.g. the representation of tangent as the ratio of sine and cosine:
      tan(α)=sin(α)cos(α)tan(\alpha) = \frac{sin(\alpha)}{cos(\alpha)}
    • expressions for values of trigonometric functions for half-angles or multiples of angle, e.g.
      sin(2α)=2sin(α)cos(α)sin(2 \alpha) = 2 sin(\alpha) \cdot cos(\alpha)
    • expressions for sum, difference or product of one or more trigonometric functions, e.g.
      sin(α)+sin(β)=2sin(α+β2)cos(αβ2)sin(\alpha) + sin(\beta) = 2 sin\left(\frac{\alpha + \beta}{2}\right) \cdot cos\left(\frac{\alpha - \beta}{2}\right)
    • expressions for values of the trigonometric function of angles sum or angles difference e.g.:
      sin(α+β)=sin(α)cos(β)+cos(α)sin(β)sin(\alpha + \beta) = sin(\alpha) cos(\beta) + cos(\alpha) sin(\beta)
    • etc.
  • ⓘ Hint: If you are interested in trigonometry you can checkout our other calculators:
    • reduction formulas - so-called reduction formulas table, that help to calculate value of trigonometric functions for less common angles,
    • trigonometric functions values - a table containing the values of trigonometric functions for the most common angles, e.g. sin 90 degrees,
    • trigonometric identities - a list of different, more or less popular, dependencies between various trigonometric functions.

Tags and links to this website#

What tags this calculator has#

Permalink#

This is permalink. Permalink is the link containing your input data. Just copy it and share your work with friends:

Links to external sites (leaving Calculla?)#

JavaScript failed !
So this is static version of this website.
This website works a lot better in JavaScript enabled browser.
Please enable JavaScript.