Table of values of trigonometric functions of selected angles
Table shows values of trigonometric functions of selected angles. Included functions are: sine, cosine, tangens and cotangens. Both deegres and radians angles are presented.

Trigonometric functions#

Angle in radiansAngle in degreessincostancot
Show source00Show source00 ^\circShow source00Show source11Show source00Show source-
Show sourceπ12\frac{\pi}{12}Show source1515 ^\circShow source624\frac{\sqrt{6} - \sqrt{2}}{4}Show source6+24\frac{\sqrt{6} + \sqrt{2}}{4}Show source232 - \sqrt{3}Show source2+32 + \sqrt{3}
Show sourceπ10\frac{\pi}{10}Show source1818 ^\circShow source514\frac{\sqrt{5} - 1}{4}Show source10+254\frac{\sqrt{10 + 2\sqrt{5}}}{4}Show source251055\frac{\sqrt{25 - 10\sqrt{5}}}{5}Show source5+25\sqrt{5 + 2\sqrt{5}}
Show sourceπ8\frac{\pi}{8}Show source221222\frac{1}{2} ^\circShow source222\frac{2 - \sqrt{2}}{2}Show source222\frac{2 - \sqrt{2}}{2}Show source21\sqrt{2} - 1Show source2+1\sqrt{2} + 1
Show sourceπ6\frac{\pi}{6}Show source3030 ^\circShow source12\frac{1}{2}Show source32\frac{\sqrt{3}}{2}Show source33\frac{\sqrt{3}}{3}Show source3\sqrt{3}
Show sourceπ4\frac{\pi}{4}Show source4545 ^\circShow source22\frac{\sqrt{2}}{2}Show source22\frac{\sqrt{2}}{2}Show source11Show source11
Show sourceπ3\frac{\pi}{3}Show source6060 ^\circShow source32\frac{\sqrt{3}}{2}Show source12\frac{1}{2}Show source3\sqrt{3}Show source33\frac{\sqrt{3}}{3}
Show source512π\frac{5}{12} \piShow source7575 ^\circShow source6+24\frac{\sqrt{6} + \sqrt{2}}{4}Show source624\frac{\sqrt{6} - \sqrt{2}}{4}Show source2+32 + \sqrt{3}Show source232 - \sqrt{3}
Show sourceπ2\frac{\pi}{2}Show source9090 ^\circShow source11Show source00Show source-Show source00

Some facts#

  • Trigonometric functions are:
    • sine (sinx) - the ratio of the length of the opposite side to the length of the hypotenuse,
      sinx=oppositehypotenuse\sin x = \dfrac{opposite}{hypotenuse}
    • cosine (cosx) - the ratio of the length of the adjacent side to the length of the hypotenuse,
      cosx=adjacenthypotenuse\cos x = \dfrac{adjacent}{hypotenuse}
    • tangens (tanx) - the ratio of the length of the side opposite to the angle to the length of the side adjacent to this angle,
      tanx=oppositeadjacent\tan x = \dfrac{opposite}{adjacent}
    • cotangens (cotx) - the ratio of the length of the side adjacent to the angle to the length of the side that lies opposite this angle,
      cotx=adjacentopposite\cot x = \dfrac{adjacent}{opposite}

    • secans (secx) - the ratio of the hypotenuse length to the length of the side adjacent to the angle (inverse cosine),
    • cosecans (cosecx) - the ratio of the hypotenuse length to the length of the side opposite the angle of the sine.
  • The values of trigonometric functions for frequently used angles can be found in mathematical tables.
  • Sometimes we need to find the value of the selected trigonometric function for less typical angles, e.g. a sine of 51 degrees. Then the function's value can be calculated by developing a given function in the so-called Taylor's serie (or more general: power serie).
    sinx=xx33!+x55!x77!+=n=0(1)nx2n+1(2n+1)!\sin x = x - \dfrac{x^3}{3!} + \dfrac{x^5}{5!} - \dfrac{x^7}{7!} + \cdots = \sum_{n=0}^\infty (-1)^n\dfrac{x^{2n+1}}{(2n+1)!}
    cosx=1x22!+x44!x66!+=n=0(1)nx2n(2n)!\cos x = 1 - \dfrac{x^2}{2!} + \dfrac{x^4}{4!} - \dfrac{x^6}{6!} + \cdots = \sum_{n=0}^\infty(-1)^n\dfrac{x^{2n}}{(2n)!}
    tanx=x+x33+2x515+=n=1B2n(4)n(14n)(2n)!x2n1,x<π2\tan x = x + \dfrac{x^3}{3} + \dfrac{2 x^5}{15} + \cdots = \sum^{\infty}_{n=1} \dfrac{B_{2n} (-4)^n (1-4^n)}{(2n)!} x^{2n-1}, \quad |x|<\dfrac{\pi}{2}
    cot x=1xx3x3452x5945=n=0(1)n22nB2nx2n1(2n)!,0<x<πcot\ x = \dfrac {1}{x} - \dfrac {x}{3} - \dfrac {x^3} {45} - \dfrac {2 x^5} {945} - \cdots = \sum_{n=0}^\infty \dfrac{(-1)^n 2^{2n} B_{2n} x^{2n-1}}{(2n)!}, \quad 0 < |x| < \pi
    sec x=1+x22+5x424+61x6720+=n=0(1)nE2n(2n)!x2n,x<π2sec\ x = 1 + \dfrac {x^2}{2} + \dfrac {5 x^4} {24} + \dfrac {61 x^6} {720} + \cdots = \sum^{\infty}_{n=0} \dfrac{(-1)^n E_{2n}}{(2n)!} x^{2n}, \quad |x|< \dfrac{\pi}{2}
  • The calculation of the function value by expanding into a power series is used by computers or pocket calculators.
  • ⓘ Hint: If you are interested in trigonometry you can checkout our other calculators:
    • reduction formulas - so-called reduction formulas table, that help to calculate value of trigonometric functions for less common angles,
    • trigonometric functions values - a table containing the values of trigonometric functions for the most common angles, e.g. sin 90 degrees,
    • trigonometric identities - a list of different, more or less popular, dependencies between various trigonometric functions.

Tags and links to this website#

What tags this calculator has#

Permalink#

This is permalink. Permalink is the link containing your input data. Just copy it and share your work with friends:

Links to external sites (leaving Calculla?)#

JavaScript failed !
So this is static version of this website.
This website works a lot better in JavaScript enabled browser.
Please enable JavaScript.