Pressure calculator
Calculator finds out pressure based on force and area.

Beta version#

BETA TEST VERSION OF THIS ITEM
This online calculator is currently under heavy development. It may or it may NOT work correctly.
You CAN try to use it. You CAN even get the proper results.
However, please VERIFY all results on your own, as the level of completion of this item is NOT CONFIRMED.
Feel free to send any ideas and comments !

Symbolic algebra

ⓘ Hint: This calculator supports symbolic math. You can enter numbers, but also symbols like a, b, pi or even whole math expressions such as (a+b)/2. If you still don't sure how to make your life easier using symbolic algebra check out our another page: Symbolic calculations

What do you want to calculate today?#

Choose a scenario that best fits your needs

Calculations data - enter values, that you know here#

Pressure (p)
=>
Force (F)
<=
Surface area (A)
<=

Units normalization#

Force (F)Show source2000 [N]2000\ \left[N\right]
Surface area (A)Show source3000 [m2]3000\ \left[m^2\right]
Pressure (p)

Result: pressure (p)#

Summary
Used formulaShow sourcep=FAp=\frac{F}{A}
ResultShow source23\frac{2}{3}
Numerical resultShow source0.6666666666666666666666666666666666666666666666666666666666666667 [Pa]0.6666666666666666666666666666666666666666666666666666666666666667\ \left[Pa\right]
Result step by step
1Show source20003000\frac{2000}{3000}The original expression-
2Show source20003000\frac{\cancel{2000}}{\cancel{3000}}Cancel terms or fractions
  • Dividing a number by itself gives one, colloquially we say that such numbers "cancel-out": aa=1 \frac{\cancel{a}}{\cancel{a}} = 1
  • to find-out the simplest form of fraction we can divide the numerator and denominator by the greatest common divisor (GCD) of both numbers.
3Show source23\frac{2}{3}ResultYour expression reduced to the simplest form known to us.
Numerical result step by step
1Show source0.66666666666666666666666666666666666666666666666666666666666666670.6666666666666666666666666666666666666666666666666666666666666667The original expression-
2Show source0.66666666666666666666666666666666666666666666666666666666666666670.6666666666666666666666666666666666666666666666666666666666666667ResultYour expression reduced to the simplest form known to us.
Units normalization
Show source0.6666666666666666666666666666666666666666666666666666666666666667 [Pa]0.6666666666666666666666666666666666666666666666666666666666666667\ \left[Pa\right]

Some facts#

  • Pressure determines the force that works perpendicular to the surface. Mathematically, we can write it down in the following way:
    p=FpSp = \dfrac{F_p}{S}
    where:
    • pp - pressure,
    • FpF_p - component of force acting perpendicular to the surface,
    • SS - the area on which force is acting.
  • Pressure is scalar.
  • The pressure is usually marked with the letter p or P.
  • The pressure prevailing in the gas-filled vessel is the average force acting on the walls of this vessel. In this sense, the pressure is thus the statistical property.
  • The basic pressure unit in the SI system is pascal, which is equal to the pressure corresponding to the force of one newton acting on the surface of one square meter:
    1Pa=1N1m21 Pa = \dfrac{1 N}{1 m^2}
  • The relationship between pressure, temperature, and volume of perfect gas (i.e. one where the particles do not interact with each other) is described by the Clapeyron's equation:
    pV=nRTpV = nRT
    where:

Tags and links to this website#

What tags this calculator has#

Permalink#

This is permalink. Permalink is the link containing your input data. Just copy it and share your work with friends:

Links to external sites (leaving Calculla?)#

JavaScript failed !
So this is static version of this website.
This website works a lot better in JavaScript enabled browser.
Please enable JavaScript.