Beta version
BETA TEST VERSION OF THIS ITEM
This online calculator is currently under heavy development. It may or it may NOT work correctly.
You CAN try to use it. You CAN even get the proper results.
However, please VERIFY all results on your own, as the level of completion of this item is NOT CONFIRMED.
Feel free to send any ideas and comments !
This online calculator is currently under heavy development. It may or it may NOT work correctly.
You CAN try to use it. You CAN even get the proper results.
However, please VERIFY all results on your own, as the level of completion of this item is NOT CONFIRMED.
Feel free to send any ideas and comments !
What do you want to calculate today?
Choose a scenario that best fits your needs 
Calculations data  enter values, that you know here
Function value ($y$) (the function value at single point x, often marked as f(x))  =>  
Slope ($a$) (number that describes the direction and the steepness of the line, sometimes is called gradient)  <=  
Function argument ($x$)  <=  
Free parameter ($b$)  <= 
Result: function value ($y$)
Summary  
Used formula  Show source$y= a~ x+ b$  
Result  Show source$2$  
Numerical result  Show source$2$  
Result step by step  
 
Numerical result step by step  

Some facts
 The linear function is a function that can be presented in the following form:
$y= a~ x+ b$where:
 $y$  function value (the function value at single point x, often marked as f(x)),
 $x$  function argument (called also independent value),
 $a$, $b$  linear function coefficients (slope and free parameter).
 The graph of the linear function is a straight line.
 Slope of a linear function defines the degree of slope of the line to the OX axis ("horizontal"). Depending on the slope value, we can distinguish three cases:
 when the slope is zero (a = 0)  the function is reduced to the constant function, its plot is a line parallel to the OX axis,
 when the slope is positive (a > 0)  the function is increasing, it's plot is a line going towards the upper right corner of the graph,
 when the slope is negative (a < 0)  the function is decreasing, its plot is a line going towards the lower right corner of the graph.
 when the slope is zero (a = 0)  the function is reduced to the constant function, its plot is a line parallel to the OX axis,
 A linear function can have one, infinitely many or no zeros (roots). This depends on the parameter values a and b as follow:
 when the slope a is different from zero (a ≠ 0)  the function has exactly one root (zero point), the plot of the function crosses the OX axis one time in the point:
$x=\frac{ b}{ a}$  when the slope a is zero, but the free parameter b is not (a = 0 and b ≠ 0)  function has no roots (zero points), it's plot does not cross the OX axis, the function is reduced to the form:
$y = b$  if both the slope a and the free parameter b are zero (a = 0 and b = 0)  the function has infinite number of roots (zero points), it's plot coincides with the axis OX:
$y = 0$
 when the slope a is different from zero (a ≠ 0)  the function has exactly one root (zero point), the plot of the function crosses the OX axis one time in the point:
 The linear function is a special case of the polynomial function with the order of 0 (when a = 0) or 1.
Tags and links to this website
Tags:
linear_function_calculator · linear_function_root_calculator · linear_function_value_calculator · value_of_linear_function_in_point · linear_slope_calculator · linear_gradient_calculator
Tags to Polish version:
What tags this calculator has
Permalink
This is permalink. Permalink is the link containing your input data. Just copy it and share your work with friends: