Mathematical tables: e number formulas
Table shows various methods of calculation or definitions of the so-caller e number.

# Beta version#

BETA TEST VERSION OF THIS ITEM
This online calculator is currently under heavy development. It may or it may NOT work correctly.
You CAN try to use it. You CAN even get the proper results.
However, please VERIFY all results on your own, as the level of completion of this item is NOT CONFIRMED.
Feel free to send any ideas and comments !

# Number e as sequence limit#

 Formula Note Show source$e = \lim_{n\to\infty}\left(1+\tfrac{1}{n}\right)^n$ - Show source$e = \lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}}$ One of so-called Stirling's formulas Show source$e = \lim_{n \to \infty} n\cdot\left( \frac{\sqrt{2 \pi n}}{n!} \right)^{1/n}$ One of so-called Stirling's formulas Show source$e = \lim_{n\to\infty} \frac{n!}{!n}$ - Show source$e = \lim_{n\to\infty} \left({\rm }\frac{(n+1)^{n+1}}{n^n} - \frac{n^n}{(n-1)^{n-1}}\right)$ -

# Number e as infinite serie#

 Formula Note Show source$e = 2+\frac{1}{1+\frac{1}{2+\frac{2}{3+\frac{3}{\ddots}}}}$ It' so-called continued fraction. Show source$e = \sum_{n=0}^\infty \frac{1}{n!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$ - Show source$e = \left[ \sum_{n=0}^\infty \frac{(-1)^n}{n!} \right]^{-1}$ - Show source$e = \left[ \sum_{n=0}^\infty \frac{1-2n}{(2n)!} \right]^{-1}$ - Show source$e = \frac{1}{2} \sum_{n=0}^\infty \frac{n+1}{n!}$ - Show source$e = 2 \sum_{n=0}^\infty \frac{n+1}{(2n+1)!}$ - Show source$e = \sum_{n=0}^\infty \frac{3-4n^2}{(2n+1)!}$ - Show source$e = \sum_{n=0}^\infty \frac{(3n)^2+1}{(3n)!}$ - Show source$e = \left[ \sum_{n=0}^\infty \frac{4n+3}{2^{2n+1} (2n+1)!} \right]^2$ - Show source$e = \left[\frac{-12}{\pi^2} \sum_{n=1}^\infty \frac{1}{n^2} \cos \left( \frac{9}{n\pi+\sqrt{n^2\pi^2-9}} \right) \right]^{-1/3}$ - Show source$e = \sum_{n=1}^\infty \frac{n^2}{2(n!)}$ -

# Number e as infinite product#

 Formula Note Show source$e = 2\cdot\sqrt\frac{4}{3}\cdot\sqrt\frac{6\cdot 8}{5\cdot 7}\cdot\sqrt\frac{10\cdot 12\cdot 14\cdot 16}{9\cdot 11\cdot 13\cdot 15}\cdots=2\cdot\prod_{n=1}^\infty\sqrt[2^n]\frac{\prod_{i=1}^{2^{n-1}}(2^n+2i)}{\prod_{i=1}^{2^{n-1}}(2^n+2i-1)}$ - Show source$e = 2 \left( \frac{2}{1} \right)^{1/2} \left( \frac{2}{3} \frac{4}{3} \right)^{1/4} \left( \frac{4}{5} \frac{6}{5} \frac{6}{7} \frac{8}{7} \right)^{1/8} \cdots =2\prod_{n=1}^\infty\sqrt[2^n]\frac{[(2^{n-1}-1)!!]^2[(2^n)!!]^2}{[(2^{n-1})!!]^2[(2^n-1)!!]^2}$ A formula by Nick Pippenger in 1980,$n!!$ is so-called double factorial.

# Some facts#

• The number e is useful in many fields of mathematics, natural sciences and engineering.
• Other common names are Euler's number or Napier's number.
• The number e can be defined in many different ways depending on the context. One of the most common definitions is to present the number e as limit of the sequence:
$e = \lim_{n\to\infty}\left(1+\tfrac{1}{n}\right)^n$
or as a sum of serie:
$e = \sum_{n=0}^\infty \dfrac{1}{n!} = \dfrac{1}{0!} + \dfrac{1}{1!} + \dfrac{1}{2!} + \dfrac{1}{3!} + \dfrac{1}{4!} + \dots$
• The approximated value of the number e is:
$e \approx 2,718281828459$
• The e number is the basis of natural logarithm.
• The number e is also related to exponential function:
$f(x) = exp(x) = e^x$

# Tags and links to this website#

Tags:
Tags to Polish version: