Mathematical tables: short multiplication formulas
Tables shows various short multiplication formulas. Both common formulas such as (a + b)² (square of a sum) and general cases (e.g. any power of a sum) are presented.

# Beta version

BETA TEST VERSION OF THIS ITEM
This online calculator is currently under heavy development. It may or it may NOT work correctly.
You CAN try to use it. You CAN even get the proper results.
However, please VERIFY all results on your own, as the level of completion of this item is NOT CONFIRMED.
Feel free to send any ideas and comments !

# Short multiplication formulas

 Name Formula Square of sum Show source${\left( a+\mathrm{b}\right)}^{2}={ a}^{2}+2~ a~\mathrm{b}+{\mathrm{b}}^{2}$ Square of difference Show source${\left( a-\mathrm{b}\right)}^{2}={ a}^{2}-2~ a~\mathrm{b}+{\mathrm{b}}^{2}$ Cube of a sum Show source${\left( a+\mathrm{b}\right)}^{3}={ a}^{3}+3~{ a}^{2}~\mathrm{b}+3~ a~{\mathrm{b}}^{2}+{\mathrm{b}}^{3}$ Cube of a difference Show source${\left( a-\mathrm{b}\right)}^{3}={ a}^{3}-3~{ a}^{2}~\mathrm{b}+3~ a~{\mathrm{b}}^{2}-{\mathrm{b}}^{3}$ Sum of a cubes Show source${ a}^{3}+{\mathrm{b}}^{3}=\left( a+\mathrm{b}\right)~\left({ a}^{2}- a~\mathrm{b}+{\mathrm{b}}^{2}\right)$ Difference of a cubs Show source${ a}^{3}-{\mathrm{b}}^{3}=\left( a-\mathrm{b}\right)~\left({ a}^{2}+ a~\mathrm{b}+{\mathrm{b}}^{2}\right)$ Sophie Germain identity Show source${ a}^{4}+4~{\mathrm{b}}^{4}=\left({ a}^{2}+2~ a~\mathrm{b}+2~{\mathrm{b}}^{2}\right)~\left({ a}^{2}-2~ a~\mathrm{b}+2~{\mathrm{b}}^{2}\right)$ Difference of a fourth powers Show source${ a}^{4}-{\mathrm{b}}^{4}=\left( a-\mathrm{b}\right)~\left({ a}^{3}+{ a}^{2}~\mathrm{b}+ a~{\mathrm{b}}^{2}+{\mathrm{b}}^{3}\right)$ Sum of a fifth powers Show source${ a}^{5}+{\mathrm{b}}^{5}=\left( a+\mathrm{b}\right)~\left({ a}^{4}-{ a}^{3}~\mathrm{b}+{ a}^{2}~{\mathrm{b}}^{2}- a~{\mathrm{b}}^{3}+{\mathrm{b}}^{4}\right)$ Difference of a fifth powers Show source${ a}^{5}-{\mathrm{b}}^{5}=\left( a-\mathrm{b}\right)~\left({ a}^{4}+{ a}^{3}~\mathrm{b}+{ a}^{2}~{\mathrm{b}}^{2}+ a~{\mathrm{b}}^{3}+{\mathrm{b}}^{4}\right)$ Square of three terms: (a + b + c)² Show source${\left( a+\mathrm{b}+ c\right)}^{2}={ a}^{2}+{\mathrm{b}}^{2}+{ c}^{2}+2~ a~\mathrm{b}+2~ a~ c+2~\mathrm{b}~ c$ Square of three terms: (a + b - c)² Show source${\left( a+\mathrm{b}- c\right)}^{2}={ a}^{2}+{\mathrm{b}}^{2}+{ c}^{2}+2~ a~\mathrm{b}-2~ a~ c-2~\mathrm{b}~ c$ Square of three terms: (a - b + c)² Show source${\left( a-\mathrm{b}+ c\right)}^{2}={ a}^{2}+{\mathrm{b}}^{2}+{ c}^{2}-2~ a~\mathrm{b}+2~ a~ c-2~\mathrm{b}~ c$ Square of three terms: (a - b - c)² Show source${\left( a-\mathrm{b}+ c\right)}^{2}={ a}^{2}+{\mathrm{b}}^{2}+{ c}^{2}-2~ a~\mathrm{b}-2~ a~ c+2~\mathrm{b}~ c$ Any power of a sum - general formula Show source$(a + b)^n = \sum_{k=0}^{n}{n \choose k} a^{n-k} b^k = \sum_{k=0}^{n}{\frac{n!}{k!(n-k)!}} a^{n-k} b^k$ Any power of a difference - general formula Show source$(a - b)^n = \sum_{k=0}^{n}{(-1)^k {n \choose k}} a^{n-k} b^k = \sum_{k=0}^{n}{(-1)^k \frac{n!}{k!(n-k)!}} a^{n-k} b^k$ Square of a sum of any number of terms Show source$\left(\sum_{i=1}^{k}{a_i}\right)^2 = \sum_{i=1}^{k} \sum_{j=1}^{k} a_i a_j$

# Short multiplication formulas: formulas with square of a numbers

 Name Formula Square of sum Show source${\left( a+\mathrm{b}\right)}^{2}={ a}^{2}+2~ a~\mathrm{b}+{\mathrm{b}}^{2}$ Square of difference Show source${\left( a-\mathrm{b}\right)}^{2}={ a}^{2}-2~ a~\mathrm{b}+{\mathrm{b}}^{2}$

# Short multiplication formulas: formulas with cube of a numbers

 Name Formula Cube of a sum Show source${\left( a+\mathrm{b}\right)}^{3}={ a}^{3}+3~{ a}^{2}~\mathrm{b}+3~ a~{\mathrm{b}}^{2}+{\mathrm{b}}^{3}$ Cube of a difference Show source${\left( a-\mathrm{b}\right)}^{3}={ a}^{3}-3~{ a}^{2}~\mathrm{b}+3~ a~{\mathrm{b}}^{2}-{\mathrm{b}}^{3}$ Sum of a cubes Show source${ a}^{3}+{\mathrm{b}}^{3}=\left( a+\mathrm{b}\right)~\left({ a}^{2}- a~\mathrm{b}+{\mathrm{b}}^{2}\right)$ Difference of a cubs Show source${ a}^{3}-{\mathrm{b}}^{3}=\left( a-\mathrm{b}\right)~\left({ a}^{2}+ a~\mathrm{b}+{\mathrm{b}}^{2}\right)$

# Short multiplication formulas: formulas with higher powers

 Name Formula Sophie Germain identity Show source${ a}^{4}+4~{\mathrm{b}}^{4}=\left({ a}^{2}+2~ a~\mathrm{b}+2~{\mathrm{b}}^{2}\right)~\left({ a}^{2}-2~ a~\mathrm{b}+2~{\mathrm{b}}^{2}\right)$ Difference of a fourth powers Show source${ a}^{4}-{\mathrm{b}}^{4}=\left( a-\mathrm{b}\right)~\left({ a}^{3}+{ a}^{2}~\mathrm{b}+ a~{\mathrm{b}}^{2}+{\mathrm{b}}^{3}\right)$ Sum of a fifth powers Show source${ a}^{5}+{\mathrm{b}}^{5}=\left( a+\mathrm{b}\right)~\left({ a}^{4}-{ a}^{3}~\mathrm{b}+{ a}^{2}~{\mathrm{b}}^{2}- a~{\mathrm{b}}^{3}+{\mathrm{b}}^{4}\right)$ Difference of a fifth powers Show source${ a}^{5}-{\mathrm{b}}^{5}=\left( a-\mathrm{b}\right)~\left({ a}^{4}+{ a}^{3}~\mathrm{b}+{ a}^{2}~{\mathrm{b}}^{2}+ a~{\mathrm{b}}^{3}+{\mathrm{b}}^{4}\right)$

# Short multiplication formulas: three terms

 Name Formula Square of three terms: (a + b + c)² Show source${\left( a+\mathrm{b}+ c\right)}^{2}={ a}^{2}+{\mathrm{b}}^{2}+{ c}^{2}+2~ a~\mathrm{b}+2~ a~ c+2~\mathrm{b}~ c$ Square of three terms: (a + b - c)² Show source${\left( a+\mathrm{b}- c\right)}^{2}={ a}^{2}+{\mathrm{b}}^{2}+{ c}^{2}+2~ a~\mathrm{b}-2~ a~ c-2~\mathrm{b}~ c$ Square of three terms: (a - b + c)² Show source${\left( a-\mathrm{b}+ c\right)}^{2}={ a}^{2}+{\mathrm{b}}^{2}+{ c}^{2}-2~ a~\mathrm{b}+2~ a~ c-2~\mathrm{b}~ c$ Square of three terms: (a - b - c)² Show source${\left( a-\mathrm{b}+ c\right)}^{2}={ a}^{2}+{\mathrm{b}}^{2}+{ c}^{2}-2~ a~\mathrm{b}-2~ a~ c+2~\mathrm{b}~ c$

# Short multiplication formulas: general formulas

 Name Formula Any power of a sum - general formula Show source$(a + b)^n = \sum_{k=0}^{n}{n \choose k} a^{n-k} b^k = \sum_{k=0}^{n}{\frac{n!}{k!(n-k)!}} a^{n-k} b^k$ Any power of a difference - general formula Show source$(a - b)^n = \sum_{k=0}^{n}{(-1)^k {n \choose k}} a^{n-k} b^k = \sum_{k=0}^{n}{(-1)^k \frac{n!}{k!(n-k)!}} a^{n-k} b^k$ Square of a sum of any number of terms Show source$\left(\sum_{i=1}^{k}{a_i}\right)^2 = \sum_{i=1}^{k} \sum_{j=1}^{k} a_i a_j$

# Some facts

• The short multiplication formulas allow quick performing of common mathematical operations e.g. a square of the sum of two numbers:
ⓘ Example: $(a + b)^2 = a^2 + 2ab + b^2$
• There is no obligation to use short multiplication formulas, because the same calculation can be done manually (step by step, multiplying all components one-by-one). However, the use of ready-made formulas may help to avoid tedious calculations and reduce the chance of making a mistake.
• We can achieve the above formula by multiplying the terms one by one (colloquially: each by each):
$\begin{array}{l} (a + b)^2 = \\ (a + b)(a + b) = \\ a(a + b) + b(a + b) = \\ a \cdot a + ab + ba + b \cdot b = \\ a^2 + 2ab + b^2 \end{array}$