Formal names of operands and results for math operations
Article explains the names of operands and result of common math operations such as addition, subtraction or division.

# Beta version#

BETA TEST VERSION OF THIS ITEM
This online calculator is currently under heavy development. It may or it may NOT work correctly.
You CAN try to use it. You CAN even get the proper results.
However, please VERIFY all results on your own, as the level of completion of this item is NOT CONFIRMED.
Feel free to send any ideas and comments !

# Formal names of operands and results for math operations

ⓘ Remember: $\begin{array}{r|rcl} % ----------------------------------------------------------------------- % Addition % ----------------------------------------------------------------------- \textbf{Addition} & \left. \begin{array}{c} \text{summand} + \text{summand} \\ \text{addend} + \text{addend} \\ \text{augend} + \text{addend} \end{array} \right\} & = & \text{sum} \\\\ % ----------------------------------------------------------------------- % Subtraction % ----------------------------------------------------------------------- \textbf{Subtraction} & \text{minuend} - \text{subtrahend} & = & \text{difference} \\\\ % ----------------------------------------------------------------------- % Multiplication % ----------------------------------------------------------------------- \textbf{Multiplication} & \left.\begin{array}{c} \text{factor} \cdot \text{factor} \\ \text{multiplier} \cdot \text{multiplicand} \end{array}\right\} & = & \text{product} \\\\ % ----------------------------------------------------------------------- % Division % ----------------------------------------------------------------------- \textbf{Division} & \left.\begin{array}{c} \text{dividend} \div \text{divisor} \\ \dfrac{\text{numerator}}{\text{denominator}} \end{array}\right\} & = & \begin{cases}\text{quotient}\\\text{ratio}\\\text{fraction}\end{cases} \\\\ % ----------------------------------------------------------------------- % Other % ----------------------------------------------------------------------- \textbf{Modulo} & \text{dividend} \mod \text{divisor} & = & \text{remainder} \\\\ \textbf{Exponentiation} & \text{base}^{\text{exponent}} & = & \text{power} \\\\ \textbf{n-th}\ \textbf{root} & \sqrt[\text{degree}]{\text{radicand}} & = & \text{root} \\\\ \textbf{Logarithm} & \log_{\text{base}}(\text{anti-logarithm}) & = & \text{logarithm} \\\\ % Functions. \textbf{Function}\ \textbf{value} & \text{function}(\text{argument}) & = & \text{function value} \\\\ % Integrals. \textbf{Indefinite}\ \textbf{integral} & \int{\text{integrand}}\ dx & = & \begin{cases}\text{indefinite integral}\\\text{root function}\\\text{anti-derivative}\end{cases} \\\\ \textbf{Definite}\ \textbf{integral} & \int\limits_{\text{lower limit}}^{\text{upper limit}} \text{integrand}\ dx & = & \begin{cases}\text{definite integral}\\\text{signed area}\end{cases} \\\\ % Differentials \textbf{Differentiation} & \left.\begin{array}{c} \text{function}^{'} \\\\ \dfrac{d}{dx} \text{function} \\\\ \dfrac{\partial}{\partial~x} \text{function} \end{array}\right\} & = & \text{derivative} \\ \end{array}$

• Basic matemathematics operation, that we can do on numbers are:
• addition, marked with a symbol $+$:
$w = a + b$
• subtraction, marked with a symbol $-$:
$w = a - b$
• multiplication, marked with a symbol $\cdot$ or $\times$:
$w = a \cdot b = a \times b$
• division, marked with a symbol $/$, $:$ or by using fraction bar:
$w = a / b = a : b = \dfrac{a}{b}$
• Depending on the type of operation, we will name the obtained result in a different way:
• the result of the addition is called sum ($a + b$),
• the result of the subtraction is called difference ($a - b$),
• the result of the multiplication is called product ($a \cdot b$),
• the result of the division is called quotient ($a : b$).
• Depending on the type of operation, we also call differently the numbers on which we perform this operation (so-called arguments or operands):
• numbers, which we add to each other, we call summands or addends:
$\text{sum} = \text{the first summand} + \text{second summand}$
• numbers that we subtract from each other, we call minuend and subtrahend:
$\text{difference} = \text{minuend} - \text{subtrahend}$
• numbers, which we multiply, we call factors:
$\text{product} = \text{the first factor} \cdot \text{second factor}$
• numbers that we divide, we call dividend and divisor
$\text{quotient} = \text{dividend} : \text{divisor}$