Table shows common constants used in physics and chemistry.

BETA TEST VERSION OF THIS ITEM

This online calculator is currently under heavy development. It may or it may NOT work correctly.

You CAN try to use it. You CAN even get the proper results.

However, please VERIFY all results on your own, as the level of completion of this item is NOT CONFIRMED.

Feel free to send any ideas and comments !

This online calculator is currently under heavy development. It may or it may NOT work correctly.

You CAN try to use it. You CAN even get the proper results.

However, please VERIFY all results on your own, as the level of completion of this item is NOT CONFIRMED.

Feel free to send any ideas and comments !

Constant | Symbol or definitional formula | Value |

Speed of light in vacuum | Show source$c$ | Show source$2,9979250 \cdot 10^8 \frac{m}{s}$ |

Elementary charge | Show source$e$ | Show source$1,602176 \cdot 10^{-19} C$ |

Avogadro's number | Show source$N_{A}$ | Show source$6,022169 \cdot 10^{23} \frac{1}{mol}$ |

Atomic mass constant | Show source$u^d$ | Show source$1,660531 \cdot 10^{-27} kg$ |

Mass of electron | Show source$m_e$ | Show source$9,109558 \cdot 10^{-31} kg$ |

Mass of proton | Show source$m_p$ | Show source$1,672614 \cdot 10^{-27} kg$ |

Faraday's constant | Show source$F$ | Show source$9,648670 \cdot 10^{4} \frac{C}{mol}$ |

Planck's constant | Show source$h$ | Show source$6,626196 \cdot 10^{-34} J \cdot s$ |

Fine structure constant | Show source$\alpha$ | Show source$7,297351 \cdot 10^{-3}$ |

Charge to mass ratio of the electron | Show source$\frac{e}{m_e}$ | Show source$1,7588028 \cdot 10^{11} \frac{C}{kg}$ |

Magnetic flux quantum | Show source$\phi_0 = \frac{h}{2e}$ | Show source$2,0678538 \cdot 10^{-15} Wb$ |

Rydberg's constant | Show source$R_{\infty}$ | Show source$1,09737312 \cdot 10^{7} \frac{1}{m}$ |

Bohr radius | Show source$a_0$ | Show source$5,2917715 \cdot 10^{-11} m$ |

Compton wavelength of the electron | Show source$\lambda_c$ | Show source$2,4263096 \cdot 10^{-12} m$ |

Electron radius | Show source$r_e$ | Show source$2,817939 \cdot 10^{-15} m$ |

Compton wavelength of the proton | Show source${\lambda}_p$ | Show source$1,3214409 \cdot 10^{-15} m$ |

Gyromagnetic ratio of the proton with diamagnetic H2O correction | Show source${\gamma}_p$ | Show source$2,6751965 \cdot 10^{8} \frac{rad}{s} \cdot T$ |

Gyromagnetic ratio of the proton | Show source$\gamma^{'}_{p}$ | Show source$2,6751270 \cdot 10^{8} \frac{rad}{s} \cdot T$ |

Bohr magneton | Show source$\mu B$ | Show source$9,274096 \cdot 10^{-24} \frac{J}{T}$ |

Nuclear magneton | Show source$\mu_N$ | Show source$5,050951 \cdot 10^{-27} \frac{J}{T}$ |

Magnetic momentic of the proton | Show source$\mu_p$ | Show source$1,4106203 \cdot 10^{-26} \frac{J}{T}$ |

Gas constant | Show source$R$ | Show source$8,31434 \frac{J}{mol} \cdot K$ |

Boltzmann's constant | Show source$k$ | Show source$1,380622 \cdot 10^{-23} \frac{J}{K}$ |

First radiation constant | Show source$c_1$ | Show source$4,992579 \cdot 10^{-24} J \cdot m$ |

Second radiation constant | Show source$c_2$ | Show source$1,438833 \cdot 10^{-2} m \cdot K$ |

Stefan-Blotzmann's constant | Show source$\sigma$ | Show source$5,66961 \cdot 10^{-8} \frac{W}{m^2} \cdot K^4$ |

Gravitional constant | Show source$G$ | Show source$6,6732 \cdot 10^{-11} \frac{N}{m^2} \cdot kg^2$ |

Molar volume of gas under normal condition | Show source$V_0$ | Show source$2,24136 \cdot 10^{-2} \frac{m^3}{mol}$ |

Vacuum permittivity | Show source$\epsilon_0$ | Show source$8,8542 \cdot 10^{-12} \frac{F}{m}$ |

- Physical constants (sometimes called chemical depending on context) are
**physical quantities**, whose**value doesn't depend on time or space**. Simply put, value of physical constant is always the same no matter**when**and**where**it is measured. - There are many physical equations containing one or more physical constants. Often they play a role of
**proportionality coefficient**. Examples of such equations may be:- Clapeyron's equation (perfect gas equation):

$pv = n\fbox{R}T$where:

- p = pressure,

- v = volume,

- n = number of moles,

- T = termodynamic temperature,

,**R = gas constant**

- p = pressure,
- the force of gravity, i.e. the force that attracts two bodies with masses:

$F = \fbox{G} \times \frac{m_1 \times m_2}{r_{12}}$where:

- F = force of gravity,

,**G = gravitional constant**

- m
_{1}= mass of the first body,

- m
_{2}= mass of the second body,

- r = distance between bodies,

- F = force of gravity,
- photon's energy:

$E_{photon} = \frac{\fbox{h} \times \fbox{c}}{ \lambda}$where:

,**h = Planck's constant**

,**c = speed of light in vacuum**

- λ = wavelength.

- Clapeyron's equation (perfect gas equation):

This is permalink. Permalink is the link containing your input data. Just copy it and share your work with friends:

- wikipedia: physical constant
- physisc.nist.gov: CODATA Internationally recommended 2014 values of the fundamental physical constants
- scienceblogs.com: are the fundamental constants really constant?
- school-for-champions.com: how to measure gravitational constant (Cavendish's experiment)
- smarterthanthat.com: how to measure the speed of light at home?

So this is static version of this website.

This website works

Please enable JavaScript.