Beta version#
BETA TEST VERSION OF THIS ITEM
This online calculator is currently under heavy development. It may or it may NOT work correctly.
You CAN try to use it. You CAN even get the proper results.
However, please VERIFY all results on your own, as the level of completion of this item is NOT CONFIRMED.
Feel free to send any ideas and comments !
This online calculator is currently under heavy development. It may or it may NOT work correctly.
You CAN try to use it. You CAN even get the proper results.
However, please VERIFY all results on your own, as the level of completion of this item is NOT CONFIRMED.
Feel free to send any ideas and comments !
Note frequencies#
MIDI number | Note [US] | Note [PL/DE] | Basic tone [Hz] | 1-st harmonic [Hz] | 2-nd harmonic [Hz] | 3-rd harmonic [Hz] |
0 | C-1 | C-1 | 8.18 | 16.35 | 24.53 | 32.7 |
1 | C♯-1 / D♭-1 | C♯-1 / D♭-1 | 8.66 | 17.32 | 25.99 | 34.65 |
2 | D-1 | D-1 | 9.18 | 18.35 | 27.53 | 36.71 |
3 | D♯-1 / E♭-1 | D♯-1 / E♭-1 | 9.72 | 19.45 | 29.17 | 38.89 |
4 | E-1 | E-1 | 10.3 | 20.6 | 30.9 | 41.2 |
5 | F-1 | F-1 | 10.91 | 21.83 | 32.74 | 43.65 |
6 | F♯-1 / G♭-1 | F♯-1 / G♭-1 | 11.56 | 23.12 | 34.69 | 46.25 |
7 | G-1 | G-1 | 12.25 | 24.5 | 36.75 | 49 |
8 | G♯-1 / A♭-1 | G♯-1 / A♭-1 | 12.98 | 25.96 | 38.93 | 51.91 |
9 | A-1 | A-1 | 13.75 | 27.5 | 41.25 | 55 |
10 | A♯-1 / B♭-1 | B-1 | 14.57 | 29.14 | 43.7 | 58.27 |
11 | B-1 | H-1 | 15.43 | 30.87 | 46.3 | 61.74 |
12 | C0 | C0 | 16.35 | 32.7 | 49.05 | 65.41 |
13 | C♯0 / D♭0 | C♯0 / D♭0 | 17.32 | 34.65 | 51.97 | 69.3 |
14 | D0 | D0 | 18.35 | 36.71 | 55.06 | 73.42 |
15 | D♯0 / E♭0 | D♯0 / E♭0 | 19.45 | 38.89 | 58.34 | 77.78 |
16 | E0 | E0 | 20.6 | 41.2 | 61.81 | 82.41 |
17 | F0 | F0 | 21.83 | 43.65 | 65.48 | 87.31 |
18 | F♯0 / G♭0 | F♯0 / G♭0 | 23.12 | 46.25 | 69.37 | 92.5 |
19 | G0 | G0 | 24.5 | 49 | 73.5 | 98 |
20 | G♯0 / A♭0 | G♯0 / A♭0 | 25.96 | 51.91 | 77.87 | 103.83 |
21 | A0 | A0 | 27.5 | 55 | 82.5 | 110 |
22 | A♯0 / B♭0 | B0 | 29.14 | 58.27 | 87.41 | 116.54 |
23 | B0 | H0 | 30.87 | 61.74 | 92.6 | 123.47 |
24 | C1 | C1 | 32.7 | 65.41 | 98.11 | 130.81 |
25 | C♯1 / D♭1 | C♯1 / D♭1 | 34.65 | 69.3 | 103.94 | 138.59 |
26 | D1 | D1 | 36.71 | 73.42 | 110.12 | 146.83 |
27 | D♯1 / E♭1 | D♯1 / E♭1 | 38.89 | 77.78 | 116.67 | 155.56 |
28 | E1 | E1 | 41.2 | 82.41 | 123.61 | 164.81 |
29 | F1 | F1 | 43.65 | 87.31 | 130.96 | 174.61 |
30 | F♯1 / G♭1 | F♯1 / G♭1 | 46.25 | 92.5 | 138.75 | 185 |
31 | G1 | G1 | 49 | 98 | 147 | 196 |
32 | G♯1 / A♭1 | G♯1 / A♭1 | 51.91 | 103.83 | 155.74 | 207.65 |
33 | A1 | A1 | 55 | 110 | 165 | 220 |
34 | A♯1 / B♭1 | B1 | 58.27 | 116.54 | 174.81 | 233.08 |
35 | B1 | H1 | 61.74 | 123.47 | 185.21 | 246.94 |
36 | C2 | C2 | 65.41 | 130.81 | 196.22 | 261.63 |
37 | C♯2 / D♭2 | C♯2 / D♭2 | 69.3 | 138.59 | 207.89 | 277.18 |
38 | D2 | D2 | 73.42 | 146.83 | 220.25 | 293.66 |
39 | D♯2 / E♭2 | D♯2 / E♭2 | 77.78 | 155.56 | 233.35 | 311.13 |
40 | E2 | E2 | 82.41 | 164.81 | 247.22 | 329.63 |
41 | F2 | F2 | 87.31 | 174.61 | 261.92 | 349.23 |
42 | F♯2 / G♭2 | F♯2 / G♭2 | 92.5 | 185 | 277.5 | 369.99 |
43 | G2 | G2 | 98 | 196 | 294 | 392 |
44 | G♯2 / A♭2 | G♯2 / A♭2 | 103.83 | 207.65 | 311.48 | 415.3 |
45 | A2 | A2 | 110 | 220 | 330 | 440 |
46 | A♯2 / B♭2 | B2 | 116.54 | 233.08 | 349.62 | 466.16 |
47 | B2 | H2 | 123.47 | 246.94 | 370.41 | 493.88 |
48 | C3 | C3 | 130.81 | 261.63 | 392.44 | 523.25 |
49 | C♯3 / D♭3 | C♯3 / D♭3 | 138.59 | 277.18 | 415.77 | 554.37 |
50 | D3 | D3 | 146.83 | 293.66 | 440.5 | 587.33 |
51 | D♯3 / E♭3 | D♯3 / E♭3 | 155.56 | 311.13 | 466.69 | 622.25 |
52 | E3 | E3 | 164.81 | 329.63 | 494.44 | 659.26 |
53 | F3 | F3 | 174.61 | 349.23 | 523.84 | 698.46 |
54 | F♯3 / G♭3 | F♯3 / G♭3 | 185 | 369.99 | 554.99 | 739.99 |
55 | G3 | G3 | 196 | 392 | 587.99 | 783.99 |
56 | G♯3 / A♭3 | G♯3 / A♭3 | 207.65 | 415.3 | 622.96 | 830.61 |
57 | A3 | A3 | 220 | 440 | 660 | 880 |
58 | A♯3 / B♭3 | B3 | 233.08 | 466.16 | 699.25 | 932.33 |
59 | B3 | H3 | 246.94 | 493.88 | 740.82 | 987.77 |
60 | C4 | C4 | 261.63 | 523.25 | 784.88 | 1046.5 |
61 | C♯4 / D♭4 | C♯4 / D♭4 | 277.18 | 554.37 | 831.55 | 1108.73 |
62 | D4 | D4 | 293.66 | 587.33 | 880.99 | 1174.66 |
63 | D♯4 / E♭4 | D♯4 / E♭4 | 311.13 | 622.25 | 933.38 | 1244.51 |
64 | E4 | E4 | 329.63 | 659.26 | 988.88 | 1318.51 |
65 | F4 | F4 | 349.23 | 698.46 | 1047.68 | 1396.91 |
66 | F♯4 / G♭4 | F♯4 / G♭4 | 369.99 | 739.99 | 1109.98 | 1479.98 |
67 | G4 | G4 | 392 | 783.99 | 1175.99 | 1567.98 |
68 | G♯4 / A♭4 | G♯4 / A♭4 | 415.3 | 830.61 | 1245.91 | 1661.22 |
69 | A4 | A4 | 440 | 880 | 1320 | 1760 |
70 | A♯4 / B♭4 | B4 | 466.16 | 932.33 | 1398.49 | 1864.66 |
71 | B4 | H4 | 493.88 | 987.77 | 1481.65 | 1975.53 |
72 | C5 | C5 | 523.25 | 1046.5 | 1569.75 | 2093 |
73 | C♯5 / D♭5 | C♯5 / D♭5 | 554.37 | 1108.73 | 1663.1 | 2217.46 |
74 | D5 | D5 | 587.33 | 1174.66 | 1761.99 | 2349.32 |
75 | D♯5 / E♭5 | D♯5 / E♭5 | 622.25 | 1244.51 | 1866.76 | 2489.02 |
76 | E5 | E5 | 659.26 | 1318.51 | 1977.77 | 2637.02 |
77 | F5 | F5 | 698.46 | 1396.91 | 2095.37 | 2793.83 |
78 | F♯5 / G♭5 | F♯5 / G♭5 | 739.99 | 1479.98 | 2219.97 | 2959.96 |
79 | G5 | G5 | 783.99 | 1567.98 | 2351.97 | 3135.96 |
80 | G♯5 / A♭5 | G♯5 / A♭5 | 830.61 | 1661.22 | 2491.83 | 3322.44 |
81 | A5 | A5 | 880 | 1760 | 2640 | 3520 |
82 | A♯5 / B♭5 | B5 | 932.33 | 1864.66 | 2796.98 | 3729.31 |
83 | B5 | H5 | 987.77 | 1975.53 | 2963.3 | 3951.07 |
84 | C6 | C6 | 1046.5 | 2093 | 3139.51 | 4186.01 |
85 | C♯6 / D♭6 | C♯6 / D♭6 | 1108.73 | 2217.46 | 3326.19 | 4434.92 |
86 | D6 | D6 | 1174.66 | 2349.32 | 3523.98 | 4698.64 |
87 | D♯6 / E♭6 | D♯6 / E♭6 | 1244.51 | 2489.02 | 3733.52 | 4978.03 |
88 | E6 | E6 | 1318.51 | 2637.02 | 3955.53 | 5274.04 |
89 | F6 | F6 | 1396.91 | 2793.83 | 4190.74 | 5587.65 |
90 | F♯6 / G♭6 | F♯6 / G♭6 | 1479.98 | 2959.96 | 4439.93 | 5919.91 |
91 | G6 | G6 | 1567.98 | 3135.96 | 4703.95 | 6271.93 |
92 | G♯6 / A♭6 | G♯6 / A♭6 | 1661.22 | 3322.44 | 4983.66 | 6644.88 |
93 | A6 | A6 | 1760 | 3520 | 5280 | 7040 |
94 | A♯6 / B♭6 | B6 | 1864.66 | 3729.31 | 5593.97 | 7458.62 |
95 | B6 | H6 | 1975.53 | 3951.07 | 5926.6 | 7902.13 |
96 | C7 | C7 | 2093 | 4186.01 | 6279.01 | 8372.02 |
97 | C♯7 / D♭7 | C♯7 / D♭7 | 2217.46 | 4434.92 | 6652.38 | 8869.84 |
98 | D7 | D7 | 2349.32 | 4698.64 | 7047.95 | 9397.27 |
99 | D♯7 / E♭7 | D♯7 / E♭7 | 2489.02 | 4978.03 | 7467.05 | 9956.06 |
100 | E7 | E7 | 2637.02 | 5274.04 | 7911.06 | 10548.08 |
101 | F7 | F7 | 2793.83 | 5587.65 | 8381.48 | 11175.3 |
102 | F♯7 / G♭7 | F♯7 / G♭7 | 2959.96 | 5919.91 | 8879.87 | 11839.82 |
103 | G7 | G7 | 3135.96 | 6271.93 | 9407.89 | 12543.85 |
104 | G♯7 / A♭7 | G♯7 / A♭7 | 3322.44 | 6644.88 | 9967.31 | 13289.75 |
105 | A7 | A7 | 3520 | 7040 | 10560 | 14080 |
106 | A♯7 / B♭7 | B7 | 3729.31 | 7458.62 | 11187.93 | 14917.24 |
107 | B7 | H7 | 3951.07 | 7902.13 | 11853.2 | 15804.27 |
108 | C8 | C8 | 4186.01 | 8372.02 | 12558.03 | 16744.04 |
109 | C♯8 / D♭8 | C♯8 / D♭8 | 4434.92 | 8869.84 | 13304.77 | 17739.69 |
110 | D8 | D8 | 4698.64 | 9397.27 | 14095.91 | 18794.55 |
111 | D♯8 / E♭8 | D♯8 / E♭8 | 4978.03 | 9956.06 | 14934.1 | 19912.13 |
112 | E8 | E8 | 5274.04 | 10548.08 | 15822.12 | 21096.16 |
113 | F8 | F8 | 5587.65 | 11175.3 | 16762.96 | 22350.61 |
114 | F♯8 / G♭8 | F♯8 / G♭8 | 5919.91 | 11839.82 | 17759.73 | 23679.64 |
115 | G8 | G8 | 6271.93 | 12543.85 | 18815.78 | 25087.71 |
116 | G♯8 / A♭8 | G♯8 / A♭8 | 6644.88 | 13289.75 | 19934.63 | 26579.5 |
117 | A8 | A8 | 7040 | 14080 | 21120 | 28160 |
118 | A♯8 / B♭8 | B8 | 7458.62 | 14917.24 | 22375.86 | 29834.48 |
119 | B8 | H8 | 7902.13 | 15804.27 | 23706.4 | 31608.53 |
120 | C9 | C9 | 8372.02 | 16744.04 | 25116.05 | 33488.07 |
121 | C♯9 / D♭9 | C♯9 / D♭9 | 8869.84 | 17739.69 | 26609.53 | 35479.38 |
122 | D9 | D9 | 9397.27 | 18794.55 | 28191.82 | 37589.09 |
123 | D♯9 / E♭9 | D♯9 / E♭9 | 9956.06 | 19912.13 | 29868.19 | 39824.25 |
124 | E9 | E9 | 10548.08 | 21096.16 | 31644.25 | 42192.33 |
125 | F9 | F9 | 11175.3 | 22350.61 | 33525.91 | 44701.21 |
126 | F♯9 / G♭9 | F♯9 / G♭9 | 11839.82 | 23679.64 | 35519.46 | 47359.29 |
127 | G9 | G9 | 12543.85 | 25087.71 | 37631.56 | 50175.42 |
Some facts#
- In a twelve-tone equal tempered system, the octave is divided into 12 equal parts (degrees).
- The transition by one octave up, corresponds to multiplying the frequency by two.
- The transition by one scale step corresponds to multiplying the frequency by (the twelve-degree root of two).
- The basis for determining the frequency of individual notes is the frequency 440 Hz, which was arbitrary assigned to the A4 note.
- Frequency 440 Hz was selected as a valid standard in 1939. In the past, however, other reference frequencies have been used depending on the historical period and the region. Directly before 1939, the so-called Pythagorean tuning was used with 432 Hz frequency of A4 note.
- The frequency of the basic tone of any note selected in the tempering system can be calculated using the following formula:
where:
- f - frequency of base tone,
- n - the number of steps (halftones) to be overcome to go from the A4 note to the selected one.
- f - frequency of base tone,
- ⓘ Example: The base frequency of C5 note is:
- In the MIDI standard, the note A4 is assigned to number 69 (called pitch). Increasing the MIDI number by 1 means increasing the note by 1 semitone and vice versa. The frequency assigned to any MIDI number is therefore:
where:
- f - frequency assigned to given MIDI number,
- p - MIDI number (pitch).
- f - frequency assigned to given MIDI number,
- Most of the world (including US, UK and most of Europe countries) use below names of whole tones:
C D E F G A B
Halftones are named by adding sharp (to increase by halftone) of flat (to decrease by halftone). Then we can create names of all notes from 12-TET chromatic scale:
- names created using sharp sign (increasing by halftone):
C C♯ D D♯ E F F♯ G G♯ A A♯ B
- names created using flat sign (decreasing by halftone):
C D♭ D E♭ E F G♭ G A♭ A B♭ B
- names created using sharp sign (increasing by halftone):
- In the Poland, Germany, Scandinavian countries the last note in chromatic scale (note B in "international" naming) is marked with letter H. So, the names of whole tones in these regions are as below:
C D E F G A H
Names of halftones are created in the same way as before, i.e. by adding a flat or a sharp signs, except the penultimate note (B♭ on the international scale), which is marked with the letter B. So, the names of the chromatic scale notes in these regions are as follows:
- names created using sharp sign (increasing by halftone):
C C♯ D D♯ E F F♯ G G♯ A B H
- names created using flat sign (decreasing by halftone):
C D♭ D E♭ E F G♭ G A♭ A B H
- names created using sharp sign (increasing by halftone):
- We read rote C♯ as c sharp, note D♯ as d sharp etc.
- We read note D♭ as d flat, note E♭ as e flat etc.
- In addition, sometimes the so-called solomization names of wholetones are used, when learning to sing:
do re mi fa sol la si do
Initially, the first and last degree (i.e. note C) was singed as ut, but over time this name was displaced by do. However, in some countries (for example in France) the original name is still used.
Tags and links to this website#
Tags:
note_frequencies · basic_frequency · basic_tone · fundamental_frequency · note_harmonics · harmonic_frequency · first_harmonic · second_harmonic · third_harmonic
Tags to Polish version:
What tags this calculator has#
Permalink#
This is permalink. Permalink is the link containing your input data. Just copy it and share your work with friends: